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The time delay between gravitational wave signals arriving at widely separated detectors can
be used to place upper and lower bounds on the speed of gravitational wave propagation. Using
a Bayesian approach that combines the first three gravitational wave detections reported by the
LIGO collaboration we constrain the gravitational waves propagation speed cgw to the 90% credible
interval 0.55 c < cgw < 1.42 c, where c is the speed of light in vacuum. These bounds will improve
as more detections are made and as more detectors join the worldwide network. Of order twenty
detections by the two LIGO detectors will constrain the speed of gravity to within 20% of the speed
of light, while just five detections by the LIGO-Virgo-Kagra network will constrain the speed of
gravity to within 1% of the speed of light.

The first detections of gravitational waves from merg-
ing black hole binaries [1–3] have been used to test many
fundamental properties of gravity [4–6], and have been
used to place the first observational upper limit on the
speed of gravitational wave propagation [7]. In this letter
we set a more stringent upper limit on the gravitational
waves propagation speed cgw by combining all the detec-
tions announced to-date, and by applying a full Bayesian
analysis. We also provide the first direct lower bound
on the propagation speed: cgw > 0.55 c at 95% confi-
dence. While there are strong theoretical arguments that
demand cgw ≥ c to prevent gravitational Cherenkov ra-
diation [8], the LIGO detections provide the first direct
observational constraints.

Gravitational waves generically propagate at a speed
different from c and with frequency dependence dis-
persion relations in theories of modified gravity, see
e.g. Refs. [7, 9–11]. Thus, a precise determination of cgw
is a test of gravitation complementary to other observa-
tions. To quantify what ‘precise’ tests mean for Gen-
eral Relativity, let us recall that some post-Newtonian
parameters are known to O(10−4) [12] while cosmologi-
cal or other astrophysical observations typically constrain
modifications to General Relativity at the O(10−2) level
[13, 14].

Measuring cgw: In the following we focus on possible
ways to directly measure cgw. Since the signals measured
by LIGO are dominated by the signal-to-noise accumu-
lated in a narrow band between 50 Hz – 200 Hz, our
time delay bounds can be interpreted as constraints on
the speed of gravity at a frequency f ∼ 100 Hz.

The most obvious way to measure the speed of gravi-
tational wave propagation is to observe the same astro-
physical source using both gravity and light. However,

for the three gravitational wave detections that have been
announced thus far no electromagnetic counterparts have
been detected, and a different approach must be taken
to constrain cgw. The finite distance between the Han-
ford and Livingston gravitational wave detectors can be
used to set an absolute upper limit on the propagation
speed [7] since the observed gravitational wave signals did
not arrive simultaneously in the two detectors. Here we
show that a proper statistical treatment that folds in the
probability distribution of the time delays as function of
cgw also allows us to set lower bounds on the propagation
velocity. It should be noted that when the first confirmed
electromagnetic counterpart to a gravitational wave sig-
nal is finally observed, the bounds on the difference in
propagation velocities, |cgw − c| will be many orders of
magnitude more stringent than what we can ever hope to
set using gravitational wave signals alone [9, 15–17]. Pre-
cisely for the same reason, this identification may never
happen if the speed difference is not very small. For other
possible stringent model-independent bounds not relying
on the detection of a counterpart see [10, 18].

Constraints on cgw from LIGO detections: The LIGO
gravitational wave detectors at the Hanford and Liv-
ingston sites are separated by a light-travel time of
t0 = 10.012 ms. The time delay for light along a prop-
agation direction that makes an angle θ with the line
connecting the two sites is ∆tEM = t0 cos θ. For sources
distributed isotropically on the sky, there are equal num-
bers of sources per solid angle element d cos θ dφ, thus the
time delays for electromagnetic signals are uniformly dis-
tributed with p(∆tEM) = 1/(2t0) for −t0 ≤ ∆tEM ≤ t0.
The gravitational wave time delay is given by ∆t =
(c/cgw)∆tEM, thus the probability of observing a time
delay ∆t between gravitational wave signals arriving at
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the two sites for sources uniformly distributed on the sky
is given by the likelihood

p(∆t|cgw) =


cgw
2 c t0

for − ct0
cgw
≤ ∆t ≤ ct0

cgw
,

0 otherwise.

(1)

While the sources may be uniformly distributed on the
sky, the antenna patterns of the detectors make it more
likely to detect systems above or below the plane of
detectors. Assuming roughly equal sensitivity for the
detectors, the observational bias scales as F 3, where
F (θ, φ)2 =

∑
D=H,L F

D
+,×(θ, φ)2 is the polarization av-

eraged network antenna pattern [19]. The resulting dis-
tribution of electromagnetic time delays is then well fit
by p(∆tEM) = (1 − (∆tEM/tq)2)/(2t0(1 − (t0/tq)2/3))
for −t0 ≤ ∆tEM ≤ t0 with tq = 10.65 ms. We
use this modified distribution to define the likelihood
p(∆t|cgw). For multiple events the full likelihood is the
product of the per-event likelihoods.The posterior distri-
bution for cgw follows from Bayes’ theorem: p(cgw|∆t) =
p(∆t|cgw)p(cgw)/p(∆t). We consider two possibilities for
the prior on the speed of gravity, p(cgw): flat in cgw and
flat in ln cgw in the interval cgw ∈ [cL, cU]. For the results
shown here we set cU = 100 c, and either cL = c/100, or
cL = c. The latter limit takes into account the Cherenkov
radiation constraint [8]. For three or more events the
choice of prior has very little impact on the upper limit.
To account for the measurement error in ∆t we use a
Markov Chain Monte Carlo to marginalize over the er-
rors in the arrival times.
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FIG. 1. Posterior distributions for the gravitational wave
propagation speed derived from each of the individual LIGO
events for prior distributions uniform in cgw or ln cgw.

The first detections of black hole mergers by LIGO
provide measurements of ∆t that were quoted in terms
of central values and 90% credible intervals. Since the
full posterior distributions for ∆t were not provided, we
assume that the distributions can be approximated as
normal distributions with mean µ and standard deviation
σ with values: GW150914 (µ = 6.9 ms, σ = 0.30 ms) [5];
GW151226 (µ = 1.1 ms, σ = 0.18 ms) [5]; GW170104

(µ = 3.0 ms, σ = 0.30 ms) [3]. The upper bound on cgw
quoted in Ref. [7] was found by taking the minimum time
delay from GW150914 as ∆t = µ − 2σ = 6.3 ms, and
demanding that cgw < c t0/∆t = 1.6 c. Note that this
value is lower than the bound of 1.7 c quoted in Ref. [7]
as they interpreted the error in ∆t quoted in Ref. [1] as
one-sigma errors, when in fact they were the bounds on
the 90% credible interval.
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FIG. 2. Posterior distributions for the gravitational wave
propagation speed derived by combining the first three LIGO
detections. Prior distributions uniform in cgw or uniform in
ln cgw were considered, with the interval starting at either
cL = c/100 or cL = c.

We compute the posterior distribution for the gravita-
tional wave propagation speed, p(cgw|∆t) using a Markov
Chain Monte Carlo algorithm that marginalizes over the
uncertainties in the time delays by drawing new values
of ∆t from the assumed posterior distributions at each
iteration of the Markov chain. Figure 1 shows the pos-
terior distributions for cgw using each of the detections
separately. Individually the three events yield 95% up-
per bounds on the propagation velocity for the linear
and (log) uniform priors of cgw < 1.37 c (1.26 c) for
GW150914; cgw < 10.1 c (8.57 c) for GW151226; and
cgw < 3.19 c (2.94 c) for GW170104. Each event also
yields a 95% lower bound on the propagation velocity,
but these limits are not very interesting since all of the
distributions have some support at cgw ' 0. Note that
GW151226 produces the weakest upper bound on the
propagation velocity even though it has the most accu-
rately measured time delay. This is because the strongest
upper limits come from events with the longest time de-
lay, and even allowing for the uncertainties in the time
delay measurements for GW150914 and GW170104, both
are constrained to have delays that are much longer than
for GW151226.

Figure 2 shows the posterior distribution for cgw found
by combining all three LIGO detections together for uni-
form priors in cgw or ln cgw. For the wider prior range
with cL = c/100 the combination of the three detec-
tions yield an interesting lower bound on the propagation
speed. The 90% credible interval for the linear and log
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priors are 0.55 c < cgw < 1.42 c and 0.41c < cgw < 1.39 c
respectively. The upper limit is only weakly dependent
on the choice of prior distribution.

One limitation of using the published LIGO results,
rather than analyzing the raw data, is that the standard
LIGO searches explicitly exclude signals with Hanford-
Livingston time delays greater 15 ms [20], so potentially
missing some signals if cgw < 0.66c. On the other hand,
pairs of loud single detector triggers consistent with a
binary merger with time delays outside the 15 ms window
would not go un-noticed.

Forecasts for more detections and more detectors: It
is interesting to consider how the bounds will improve
with additional detections and detectors, using just the
gravitational time delays (as mentioned earlier, combined
electromagnetic and gravitational observations will dra-
matically improve the measurements). The upper bound
is mostly set by detections with large time delays, while
the lower bound is set by having many signals with a
wide range of delays. For the two-detector LIGO net-
work, and assuming cgw = c as predicted by General
Relativity, we should see one event with a time delay
∆t > 8.6 ms with ten detections, and one event with a
time delay ∆t > 9.6 ms with 100 detections. Just those
single events would yield 99% upper limits better than
cgw < 1.2 c and cgw < 1.07 c respectively, assuming that
∆t is measured to a level of accuracy typical of the first
three detections (the accuracy with which ∆t can be mea-
sured depends on the signal-to-noise ratio and the num-
ber of cycles completed in-band, among other things).
Performing multiple Monte-Carlo simulations under the
assumption that General Relativity is the correct theory
of gravity indicates that with 100 detections by the 2-
detector LIGO network we will be able to constrain cgw
to within a few percent of the speed of light for both the
upper and lower bounds.

Far better constraints can be achieved with far fewer
events by using a larger network of detectors. In the next
few years the LIGO Hanford (H) and Livingston (L) de-
tectors will be joined by the Virgo (V) detector in Italy
and the Kagra (K) detector in Japan. With an N detec-
tor network there are N(N−1)/2 time delays. The maxi-
mum electromagnetic time delays between these sites are:
HL = 10.012 ms, HV = 27.288 ms, HK = 25.158 ms,
LV = 26.448 ms, LK = 32.455 ms, V K = 29.202 ms.
Upper bounds on the speed of gravity are dominated by
events with sky locations that come close to maximizing
the electromagnetic time delay between a pair of detec-
tors. For the HL network just 5% of events are within
95% of the maximum time delay, while for the HLVK
network 25% of events are. Thus, on average, it only
takes a few events to produce tight limits using the larger
network of detectors. Complete information about the
inter-site time delays is contained in the joint probability
distribution of the N −1 electromagnetic time delays be-
tween one reference detector and the other detectors in

the network. Figure 3 shows slices through the joint elec-
tromagnetic time delay distribution for the HLVK net-
work using Hanford as the reference site assuming a uni-
form distribution of sources. Here we did not correct for
the observational bias, since the network antenna pattern
for a four detector network is fairly uniform. Applying
the change of variable ∆t = (c/cgw)∆tEM to this distri-
bution as we did for the two-detector HL case yields the
joint likelihood p(∆tHL,∆tHV,∆tHK|cgw). Using sim-
ulated detections of events measured to a precision of
σ = 0.3 ms in each detector, we find that with just 3 de-
tections the HLVK network will typically be able to con-
strain cgw to the 99% credible region cgw/c = 1.00±0.02.
The constraints improve to better than 1% of the speed
of light with 5 detections.

FIG. 3. Slices through the joint electromagnetic time delay
distribution for the HLVK network using Hanford as the refer-
ence site. Darker colors in the two-dimensional slices indicate
higher density. Note the cup-like structure of the distributions
(higher at the edges than in the center).

Summary: Combining the time delay measurements
between detector sites for multiple gravitational wave
events can be used to place interesting constraints on
the speed of gravity. The LIGO detections made to-date
already constrain the speed of gravity to within 50% of
the speed of light. Additional LIGO detections in the
next few years should improve the bound to of order
10%. The bounds will improve rapidly as more detec-
tors join the worldwide network, with just a half-dozen
detections by the Hanford-Livingston-Virgo-Kagra net-
work constraining deviations to better than 1%. These
bounds will allow to test General Relativity to the level of
other standard tests, as those coming from the damping
of orbits in binary systems or cosmology.
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