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Abstract

The successive long-term increase and decrease in Sun’s activity associated
with solar cycles has not been connected to a definite underlying mechanism so
far, hence predictions about its amplitude usually depend on extrapolation from
the sunspot number of previous cycles or observations of the geomagnetic field,
becoming available only very close to or after a cycle’s start and often departing
from the actual events. Here we present a phenomenological model for quantitative
description of the cycles’ characteristics in terms of the number of M-class flares.
The main element of the model is the relative ecliptic longitude of the planets
Jupiter and Saturn. Using as input the temporal distribution of M-class flares
during cycle 21, we obtain distributions for cycles 22-24 in notable agreement with
the observed ones. Elements of shorter-term description can be elaborated further,
however we are able to provide predictions for the evolution of solar activity for the
rest of cycle 24 and for cycle 25. This deterministic description could contribute
to elucidating the underlying physical mechanism and forecasting space weather.
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Introduction

Although the characteristic repetition in solar activity approximately every 11 years is
apparently connected to the Sun’s magnetic field, no definite underlying mechanism
has been established; predictions about the amplitude of solar cycles usually depend on
extrapolation from the sunspot number of previous cycles[1] or indirectly on observations
of the geomagnetic field[2], becoming available only very close to or after a cycle’s
start[2, 3, 4] and often departing from the actual events. A comprehensive overview
of solar cycle research and prediction methods can be found in [5]. Both short-term
activity, e.g. solar storms, and its long-term evolution in cycles affect terrestrial events,
including telecommunications and global climate.



1. Observations and conventions 3

Here we present a phenomenological model for the quantitative description of individual
cycles’ features, such as start, intensity, evolution, in terms of the number of M-class
solar flares. Motivated by the recent work in [6], which reported correlation between the
eruption of solar flares and the positions of the four inner planets, we extend relevant
notions with the inclusion of the two gas giant planets, the use of relative instead of
absolute positions, and the focus on long-term solar activity. The main factor of the
model is the relative ecliptic longitude of the planets Jupiter and Saturn. Using as input
the data of cycle 21 we are able to reconstruct satisfactorily the latest three cycles and
provide predictions for the next years.

Section 1 describes the used observations and their treatment. Section 2 presents the
details of the model, which comprises of two main components. Section 3 provides
predictions for the rest of the current cycle and the next one. Section 4 discusses briefly
further points (effects related to the other planets, past activity, and bibliography on
possible underlying physical mechanisms). Conclusions are found in Section 5. In
addition, Appendix A presents performance and statistical tests of the model, while
Appendix B gives details about the sources of systematic effects and their derivation.

1 Observations and conventions

Solar flares

Sunspots are darker areas on Sun’s surface, corresponding to reduced local temperature,
caused by concentrations of magnetic field flux; their typical lifetime is in the order
of days. Solar flares occur from abrupt release of magnetic energy and are related to
sunspots since they both occur in magnetically active regions of the corona; the emission
from flares spans the whole electromagnetic spectrum and includes massive particles,
with duration in the order of minutes. While studies of the solar cycle traditionally use
the sunspots as observable, here we will employ solar flares, following the work in [6]:
While sunspots are indirect indicators of underlying dynamics, flares are actual physical
events with definite timing and released energy, as well as real impact on space weather.
The obvious drawback is being constrained to examining the four latest cycles, for which
solar flare records exist.

Solar flares are categorized on a logarithmic scale according to their X-ray brightness.
The top three categories are known as X-class, M-class and C-class, in decreasing order,
with M-class spanning 10−5-10−4 W/m2. At the present stage of this study only the
solar flare counts are used without considering their intensity; this treats the occurence
of flares as statistical timed events. Typically, X-class flares are rare while C-class
flares occur almost daily, therefore we restrict the sample to M-class flares, since their
emergence involves less randomness than C-class while they comprise a larger statistical
sample than X-class flares. Both intensities and all flare classes are planned to be
examined at a next stage of this work.
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Since the start of cycle 21 up to the end of year 2016 there have been 6,332 M-class
flares (Fig.1). The count for each cycle is quoted in Table 1. The data are X-ray flux
measurements of the NOAA SMS and GOES satellites[7]. In order to have an exact
overview of the effects under discussion no smoothing is applied on the distributions,
other than the binning in histograms.
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Figure 1: Number of M-class flares as a function of time, for solar cycles 21-24, starting on

1976/08/18. Each cycle is plotted in a different colour. Each bin spans 80 days. The end of

year 2016 is found at day 14,894.

Table 1: Number of flares and start months of the last four solar cycles (see text for definition

of start dates).

Solar cycle Number of M-class Start month Duration (days)
flares

21 2,175 Aug 1976 3,882
22 2,021 Apr 1987 3,649
23 1,434 Apr 1997 4,676
24 702 Jan 2010 2,537

(ongoing) until end of 2016

Timing convention

We will define the start of each cycle by the appearance of the first flare erupting from
a sunspot with reversed magnetic polarity. The end of each cycle is defined by the start
of the next one. The resulting dates and durations are found in Table 1.

In some of the following all four cycles will be plotted on a common time scale (Paragraph
2.1). For this, the temporal middle of each cycle is placed on zero, the axis is expanded
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from -2,000 to 2,000 days, and the data are plotted individually for each cycle. The date
for the middle of the ongoing cycle 24 was determined by the calculation described in
Paragraph 2.2, which comprises one of the elements of the model.

The individual distributions have short-scale differences with respect to Fig.1, due to the
different start values of the bins; the systematic uncertainty resulting from the binning
choices is taken into account in the analysis (Paragraph 2.1 and Appendix B.1).

Convention for the relative angle of the two planets

In the rest of the text, the relative heliocentric ecliptic longitude between Jupiter and
Saturn will be used frequently. All quoted angles will refer to the two planets’ relative
ecliptic longitude, with either conjunction or opposition corresponding to zero degrees,
i.e. both cases of alignment are treated equivalently.

For illustration, if Jupiter is found at 30o ahead of Saturn then the relative angle is
+30o (Fig.2, case a), while if it is at 345o ahead of Saturn then the relative angle is −15o

(Fig.2, b). If Jupiter is found at 160o ahead of Saturn then the relative angle will be
−20o (Fig.2, c), since they are approaching their next closest alignment, which will be
the next opposition. Consequently, the range of values of the relative angle is [−90o,
90o]. Note that, for instance, “91o” is actually −89o, since the closest alignment is the
next opposition.

Figure 2: Examples for the relative angle between the two planets according to the convention

used in the text.

2 The model

This study focusses on the general features of solar cycles -such as start, duration,
intensity, overall development- in terms of the number of M-class flares (“flares”),
bypassing short-time structures. We will demonstrate that such features can be described
in a deterministic way by a model consisting of two elements, presented in Paragraphs
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2.1 and 2.2. Some additional points are discussed in Paragraph 2.3, with a brief wrap-up
in Paragraph 2.4.

2.1 Jupiter-Saturn approach and coupling to the 11-year modulation

The principal component of the model is an apparent coupling between the empirical
11-year range associated with solar cycles (“established” range) and the relative angle
between Jupiter and Saturn (“the two planets”). Such an effect could be the manifes-
tation of an internal solar mechanism with an external planetary trigger, however no
speculations are made at present about its nature.

More precisely, we propose that the main drive behind the evolution of solar activity is
strongly correlated to the relative ecliptic longitude of Jupiter and Saturn; however, this
effect can only act within the constraints of the established 11-year range.

In this Paragraph, these two contributions will be quantified by using two distributions
extracted from the observations. Since these two quasi-periodic contributions have
different lengths1, their combined effect changes with time; we are going to quantify
their coupling by displacing them appropriately and obtaining their common area. We
will then demonstrate that the distribution of this overlap area can describe the global
characteristics of the solar cycles to a satisfactory degree.

The quantification of this proposition starts with certain assumptions:

• The effect of each of these two contributions on the solar activity follows a Gaussian
distribution.

• Both contributions are equally strong, therefore the two distributions have the
same maximum height.

• Empirically, the established range spans roughly 11 years. When the two planets’
relative longitude is considered, then activity is observed to be stronger mainly
within the range of −45o to +45o around their alignment (Fig.3).

Using these assumptions, corresponding distributions will be extracted from the obser-
vations.

The Gaussian distributions

We aim to obtain the two distributions described above, one corresponding to the
Jupiter-Saturn approach and one corresponding to the established “11-year” period.

1The established contribution fluctuates around approximately 11.0 years. The Jupiter-Saturn
synodic period oscillates around its average of ∼19.9 years, with alignments found at half this length.
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Figure 3: Distribution of flares for the last four cycles, with guides plotted at -45o, 0o and

+45o of the two planets’ relative angles.

For this we will use cycle 21 where, by a useful coincidence, the two planets’ conjunction
took place only 238 days before the middle of the cycle: Therefore we will assume that
in cycle 21 the deployment of both effects in their full ranges can be seen, and the two
distributions can be obtained by fitting the data.

The assumptions made about the two effects are translated into the following require-
ments about the Gaussian functions:

• One of the Gaussians is centered on the middle of the cycle, and the other is
centered on the date of the Jupiter-Saturn alignment.

• Both functions have the same constant.

• Their ±2σ ranges roughly cover, respectively, 3,000 days and between the dates of
−45o to +45o around the alignment.

It must be noted that in this case minimization of the fitting function’s parameters
is not the most suitable approach, because of the intense small-scale fluctuations in
the solar activity. What was preferred was a quasi-empirical modelling, by still using
minimization2, but constraining the fitting ranges so as to result in a satisfactory
description of the data.

Accordingly, the means of the distributions were fixed on the corresponding dates, while
the ranges for the constant and the standard deviation were constrained as described
above. The fit for the Jupiter-Saturn Gaussian was performed first, and the obtained

2With the MINUIT[8] module in the ROOT[9] analysis package.
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value for the constant was subsequently fixed in the fit for the “11-year” Gaussian. The
two resulting functions are shown in Fig.4. Their parameters are given in Table 2.

A systematic uncertainty of 13.5% was assigned to the model because of effects from the
binning choices (not shown in Fig.4, shown later in Fig.7). Appendix B.1 gives details
about its derivation.
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Figure 4: Distribution of flares for cycle 21 and fitting results for the Gaussian functions

corresponding to the Jupiter-Saturn effect (left) and to the “11-year” effect (right). Each bin

spans 80 days. In the case of the Jupiter-Saturn effect, guides are plotted at -45o, 0o and +45o.

(Poisson errors are shown on the data to illustrate the ranges used by the fitting algorithm.)

Table 2: Parameters of the two fitted Gaussians, for binning in 80 days. The Jupiter-Saturn

mean refers to cycle 21.

constant mean st. deviation

“11-year” Gaussian 200 0 600
Jupiter-Saturn Gaussian 200 -238 450

Coupling

After obtaining the two distributions corresponding to the two considered effects, the next
step is to center the Jupiter-Saturn Gaussian on the date of the two planets’ alignment
in each cycle. In all cases, the center of the “11-year” Gaussian corresponds to the
temporal middle of the cycle. It should be stressed that, for all cycles, the two functions
used are those obtained from the fit on cycle 21 with the only changing parameter being
the date on which the Jupiter-Saturn Gaussian is centered. (The determination of the
middle of the ongoing cycle 24 is derived from the second component of the model,
which is explained in the next Paragraph, 2.2.)

As mentioned above, we propose that the area of overlap of the two Gaussians can
describe the coupled effect of these two contributions. This is plotted in Fig.5 individually
for each cycle; the left-hand plots show the two distributions, while their common area
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is plotted in the right-hand plots, with the same binning as for the data. The latter
distribution quantifies the two contributions and their coupling, and is the first element
of the model.
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Figure 5: From top to bottom: Cycles 21 to 24. Left column: Placement of the two Gaussians

for each cycle, with the center of the “11-year” distribution (blue) corresponding to each cycle’s

temporal middle, and the center of the Jupiter-Saturn distribution (light blue) placed on the

respective dates of alignment. Right column: The binned overlap area of the two distributions.
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Figure 6: From top to bottom: Cycles 21-

24. Overlap area of the two Gaussian functions

(purple), overlaid with the data from each cy-

cle.

Comparison to data

As the last set of histograms (Fig.5, right)
is expected to form the main part of our
model, the data is overlaid on them for
comparison in Fig.6. For better overview,
the same result is plotted on a common
time axis in Fig.7, and including the used
Gaussian distributions in Fig.8.

For completeness: The plot for cycle 23
has 26 underflow events. For more clarity
no uncertainties are shown in Fig.6, but
they are plotted in Fig.7. The statistical
uncertainty is the Poisson error on the
predicted number of flares per bin. The
systematic uncertainty comes largely from
the binning effects, with the derivation dis-
cussed in Appendix B.1 (it also includes a
smaller uncertainty related to the calcula-
tions in Paragraph 2.2, whose derivation
is found in Appendix B.2).

The model appears to be in noticeable
agreement with the data on the timing,
intensity and evolution of activity in each
cycle, and also roughly on the total span.
However, it is not predictive yet since it re-
quires knowledge of the date of each cycle’s
middle, which was obtained from observa-
tions. The next Paragraph deals with this
point.

2.2 Timing of the 11-year modu-
lation

In the following it is proposed that the du-
ration of each cycle is directly related to
the time span between consecutive Jupiter-
Saturn alignments, and therefore the mid-
dle of the cycle, on which the “11-year”
Gaussian is centered, can be known in ad-
vance.
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Figure 7: All flare observations for the last four cycles (green), overlaid with the prediction

distributions. The prediction includes statistical uncertainty (gray) and systematic uncertainty

(violet). (The end of year 2016 is found at day 14,894.)
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Figure 8: Data overlaid with the two types of Gaussians and the prediction distributions

resulting from their overlap. (No uncertainties are plotted.)
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The average time length between Jupiter-Saturn alignments is 9.95 years (3,634 days),
with a natural oscillation within 2%. The established duration of the solar cycle fluctuates
around 11.02 years (4,025 days), with a recorded deviation of 10%. (It must be noted,
however, that using as exact a number as 4,025 might be larger precision than should
be used: The sample of documented cycles is rather small, their durations vary strongly,
and the calculation is affected by determining the cycles’ starts from the sunspots’ field
reversal instead of the onset of flares3.)

As a result of the different lengths of the two contributions, the displacement between
the middle of a cycle and the two planets’ alignment is increased by ∼391 days on
average between consecutive cycles. The actual increase in the displacement between
cycles 21 and 22 was 398 days, and between cycles 22 and 23 it was 523 days. Table
3 quotes the displacements and the difference of their increase from its average. The
Table also lists the lengths between the consecutive Jupiter-Saturn alignments in cycles
21-24, and their difference from their average value of 3,634 days. (In the following,
“displacement” refers to the time between the temporal middle of a cycle and the date of
the preceding alignment.)

Table 3: Displacement, time between alignments, and related differences from average values.

(all numbers Displacement Difference between the Time length Difference between

in days) between cycle’s increase in consecutive between consecutive the J-S time length

middle and J-S displacements and its J-S alignments and its average

alignment average value (391) value (3,634)

Cycle 21 238 (n/a) 3,367 -267

Cycle 22 636 7 3,640 6

Cycle 23 1,159 132 3,897 263

In this case the “data sample” consists of only two pairs of cycles, however a hypothesis
could still be made: The increase in the displacement follows the time length between
two successive alignments. Indeed, the former differs from its average value by half
the difference of the length between consecutive alignments in cycle 23, while for cycle
22 they both have values small enough to be compatible with this hypothesis. (The
displacement refers to half a cycle, while the time between alignments refers to a full
cycle, thus the factor of one half.)

Put concisely, the displacement in a cycle actually differs from its average value, by the
amount of time that the length of the two corresponding successive alignments differs
from its own average (columns three and five respectively in Table 3). From this, the
placement of the “11-year” Gaussian is determined, and the total length of a cycle
follows.

3Parenthetically, for cycles 21-23 the average duration calculated from sunspots is 10.6±0.7 years,
and with the definition using flares it is 11.1±1.2 years.
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This statement can be put in the form of a simple expression:

[displacement] = D + (<11y > − < LJS >) +
LJS– < LJS >

2
(1)

where D is the displacement in the previous cycle, 11y is the established length, and
LJS is the time length between the alignment in the examined cycle and the next one;
brackets denote the average value of the two time lengths, which is equal to 391 and
3,634 respectively.

The next alignment will take place 3,541 days after the last one, therefore by applying
Eq.1 the middle of cycle 24 is found to be at 1,503 days after the latter, on 7th April
2015. This date was used for centering the “11-year” Gaussian in the plots of the
previous Paragraph. It follows that the length of cycle 24 is calculated to be 3,808 days,
i.e. lasting up to June 2020. At this point the model can be considered fully predictive,
as it does not require any input for the calculations, other than the distribution of cycle 21.

For completeness: The middles of cycles 22 and 23 as calculated by this expression
fall 4 days before their actual dates; since the difference is small compared to the bin
size (80 days), the plots of the previous Paragraph hold. Also, it is obvious that as
the alignments move forward with respect to the cycles’ middles, at some point two
Jupiter-Saturn Gaussians will enter an “11-year” Gaussian. Our dataset did not happen
to include this case, but it is examined further in Paragraph 3.

A systematic uncertainty in the increase of the displacement is introduced from the
dispersion of the “11-year” length around its average, which is propagated to the relative
centering of the two Gaussian distributions. Its derivation is discussed in Appendix B.2.
This uncertainty is applied whenever Eq.1 is used for the calculation of the date for
centering the established Gaussian. Fig.7 also included this systematic effect, whose
magnitude can be seen separately in Appendix B.2 (Fig.16).

Lastly, the relation between the evolution of solar activity and the displacement, with
the latter actually acting as a measure of the two contributions’ coupling, can also be
illustrated by Fig.9: Although the placement of the “11-year” Gaussian and the resulting
modelling concern mainly the central part of each cycle, the total number of observed
flares in each cycle is plotted in this case as a function of the displacement.

2.3 Angular range of activity

Although no physical mechanism is inferred yet, phenomenologically the solar activity
seems to be regulated by the approach and retreat of the two gas giants, with conjunction
and opposition having equal roles. In this picture, when the two planets start approaching
to their alignment closer than -90o, a build-up of activity begins which manifests after
some further approach. When the planets move away from alignment the activity
starts to decrease, following however the pattern of the overlap with the established
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Figure 9: Total number of flares observed in each cycle, as a function of the displacement

between its middle and the previous Jupiter-Saturn alignment.

contribution. Finally, when they retreat further away than +90o, the activity dies off as
a new phase of approach to the next alignment actually begins.

The compatibility of this scenario to the observations can be seen in Fig.8, where the
dates of |90o| are found at the edges of each Jupiter-Saturn Gaussian. A notable case
seems to be the ongoing cycle. Several prediction methods, even updated as late as
2009, expected smoothly decreasing activity in 2016 and later[3]. In reality the solar
activity almost disappeared after the retreat further than +90o in December 2015, with
only a handful of M-class flares in 2016 and even 32 spotless days.

Although the model agrees with the main part of the cycles in the overall intensity
and timing, time ranges outside the overlap are not covered by it. However, wherever
both Gaussians still have significant strength, these ranges are seen to host activity of
intensity comparable to the main part. This point is left to be quantified in a subsequent
stage of the analysis. (At any rate, some relevant discussion is found in Paragraph 3.)

2.4 Summary of the model

A quantitative model was presented for the description of the solar cycles in terms of
M-class flares activity. Although no proposal is made yet about the underlying physical
mechanism, the activity was found to be significantly modulated by the relative motion
of Jupiter and Saturn.

More specifically, it is stated that: The main drive behind the long-term solar activity
is strongly correlated to the approach and retreat of Jupiter and Saturn with respect to
their alignments. Every new phase of activity starts as they approach closer than 90o

of relative ecliptic longitude. However, this effect can only act within the bounds of the
“established” 11-year periodic range.
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We were able to quantify these observations by using two components:

• The combined effect of the two modulations, as quantified by the overlap of two
Gaussian functions extracted from the data of cycle 214.

• The determination of any cycle’s temporal middle, derived from the average length
of the established modulation and the exact length between consecutive alignments
of the two planets.

In addition, it is observed that, outside the overlapping area, activity is expected in
ranges where both Gaussians still have significant strength, with a decrease towards the
date of +90o which separates phases of activity.

The sole input to the model is the temporal distribution of flares in cycle 21 and the
date of its middle. Forecasting for other cycles can be done by using the dates of the
two planets’ alignments. The next Section provides predictions for the rest of cycle 24
and for cycle 25.

Quantification and tests of the model’s descriptive strength are presented in Appendix
A.1. Additional tests in Appendix A.2 probe the possibility that a satisfactory description
can emerge randomly from using the specific Gaussian distributions. Both kinds of
results provide supplementary support for the proposed mechanism.

3 Forecasting cycles 24 and 25

In order to discuss about the evolution of the rest of the current and the next solar
cycle, the two types of Gaussians are plotted in Fig.10 for the next years, centered on
the appropriate dates as described in Paragraph 2.2.

According to the model as described in Section 2.1, activity is expected in the large
overlap region around day 19,000, following the actual shape of the overlap distribution.
This will form essentially the main part of cycle 25, which would be rather brief as the
next “11-year” period will be reaching its end. Its intensity will be comparable to that
of the current cycle.

4A note concerning the fit constraints: If we perform an unconstrained minimization fit on cycle
21, the result has a height of around 100, deviation around 500, and its mean is moved to the left;
the values for the other two parameters persist if the mean is placed either on the cycles’ middle, the
alignment date or the “local maximum” bin with 160 flares.
A similar result is obtained if we drop the assumption that the two Gaussians have the same height:
Then the minimization arranges both heights so that in the overlap area we see only the distribution
from the Jupiter-Saturn Gaussian with its height changed to ∼100. Therefore, in both cases it can be
said that unconstrained fits result in a “trivial Gaussian”, which does not describe satisfactorily the
data.
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Figure 10: Flare observations and model distributions, with the two types of Gaussians ex-

panded over the next ∼5,000 days, starting from cycle 24. (The end of year 2016 is found at

day 14,894.)

However, as discussed in Paragraph 2.3, activity is also expected empirically inside other
time ranges where both Gaussians have significant strength (although this point is not
quantified so far). Accordingly, activity could appear in the first two smaller overlap
areas.

In between the three overlap ranges no notable activity is expected, since we are at
the fringes of the established modulation (in the first instance) and around 90o of the
Jupiter-Saturn modulation (in the second instance).

The overall picture is compatible with the current “orthodox” expectation of a minimum
in solar activity (which is, however, mainly the result of extrapolations from the previous
cycles). Features similar to the Dalton minimum could be expected.

In addition to the intensity and duration of activity, another feature is the transition
from a cycle to a new one. A new solar cycle is traditionally defined by sunspots with
reversed magnetic field and, under our scheme, flares erupting from such sunspots. As
the established modulation is reasonably considered to be the determining factor here,
field reversal is expected to occur in the second overlap area. (In this case, cycle 24
could be characterized by triple peak activity. This point could even be settled around
the end of 2017/start of 2018, after some advancement into the first overlap area.)
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4 Further discussion

4.1 Other planetary effects

The findings reported in [6], suggesting a relation between short-term evolution of solar
activity and the inner planets’ positions, can be viewed complementarily with those
here. A common description can underlie phenomena of different time scales, with a
higher-frequency modulation due to the fast-moving planets closer to the Sun and a
more stable long-term element (the solar cycle) due to the massive and slower gas giants.

As to planets Uranus and Neptune, although their distance from the Sun makes their
contribution appear unlikely, their slow motion can conceivably add a steady underlying
element in very-long-scale solar activity. A brief observation can be made about their
possible role: During the recorded solar history three conjunctions of Uranus and
Neptune took place, in the years 1650, 1821 and 1993. With a first look these dates are
in the vicinity of the three extrema of recorded activity: The Maunder minimum between
years 1650 and 1710, the Dalton minimum in 1800-1820, and the modern maximum in
the end of the 20th century. However these obviously include both minima and maxima.

Nonetheless, a distinguishing feature exists between these cases. Close to the minima,
the corresponding Jupiter-Saturn alignments occurred at a normal angle with respect to
that of Uranus and Neptune, while in the case of the maximum Jupiter and Saturn were
aligned also with Uranus and Neptune. Notably, just before the Maunder minimum two
consecutive Jupiter-Saturn alignments were actually covered, both at a normal angle
with respect to the Uranus-Neptune conjunction.

These concepts remain to be quantified, but a combined effect of this kind is a plausible
extension of the mechanism described for Jupiter and Saturn. If present, then the
Maunder minimum could be the result of a significant disruption in the solar activity
pattern, since the formation of two consecutive cycles was affected. As about the modern
maximum, it could point to the fact that the global upper “bound” of solar activity,
which was taken as a given factor in this model, is actually regulated by a synergy
between the four outer planets.

4.2 Historical activity

An extrapolation of the model back to the whole era of reliable sunspot records and
comparison to the sunspots activity could be informative, although there are expected
sources of discrepancy: The standard representation of sunspot activity is smoothed to
its 13-month mean, the model presented here is not definitive yet on the cases with two
Jupiter-Saturn Gaussians entering a single “11-year” Gaussian, and more importantly, a
precise correspondence between sunspots and flares activity is not established in general.
Moreover, a complete description should obviously be extended to all possible planetary
effects, as discussed briefly in the previous Paragraph.
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At any rate a simplistic extrapolation of the model is shown in Fig.11; dots correspond
to the maximum height of the main area of overlap between the two Gaussians in each
cycle, and exhibit rough compatibility with the sunspot maxima and general evolution,
but displacement in the timing of the minima. More detailed comparison is one goal
of the next stage of the analysis. The establishment of a correspondence between the
two solar indices and the consideration of all planetary effects should be parts of such a
comparison.

Figure 11: Extrapolation of the model (red) to the whole era with sunspot records, overlayed

with the historical observations (smoothed sunspot monthly averages). The values of the model

are normalized to the peak of cycle 23. (Image credit: Marshall Space Flight Center/NASA.)

4.3 On physical mechanisms

Energetic solar events and the solar cycle are widely attributed to a magnetic dynamo
mechanism[10] although their modelling is still far from complete[11] and no internal or
external regulating factors have been established. Over the past two centuries a number
of studies have occasionally pointed out relations between the planets’ periods and
solar activity; although planetary tidal effects have been disfavoured[12], other possible
explanations have been put forth. However, most of the relevant work is based on
spectral analysis or pure arithmetic analysis of patterns in solar activity and planetary
periods, with only a few studies attempting quantification using timed solar weather
events.

We list indicatively some notable recent studies, while pointing out that the discussion
is open on several of them. A planetary torque exertion on the tachocline is examined in
[13]; the spectral analysis in [14] focusses on the combined effects of Jupiter and Saturn,
while [15] focusses on Uranus and Neptune and discusses a spin-orbit coupling mechanism.
The latter builds on a proposal based on the motion of the solar system’s barycenter
[16], which was elaborated recently also in [17] with findings of some similarity to those
presented here. It is perhaps noteworthy that all these studies point to a coupling
between an internal mechanism and external triggers.

A proposal of different nature is the lensing of dark matter streams[18] in [6], where
relation between planetary positions and solar flares was first reported. A recent study
with findings similar to [6] concerning the role of the inner planets is presented in [19].
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Finally, a remarkable phenomenological study is [20], which directly related planetary
positions with terrestrial radio propagation conditions.

At this stage of the present work no inferences are drawn about possible underlying
mechanisms. However this modelling, and any further quantification of it, is expected
to offer definite hints for their determination.

5 Conclusions

A model was presented for the phenomenological description of long-term solar activity
and the quantification of the main features of solar cycles. The principal element of the
model is a coupling between the empirical time length of ∼11 years and the relative
ecliptic longitude of the planets Jupiter and Saturn. This coupling was expressed by the
common area of two Gaussian distributions, both extracted from the observations of
M-class flares in solar cycle 21.

An element required by this modelling is the date of a cycle’s temporal middle; this is
calculated from the time lengths of the two involved effects, i.e. the ∼11-year length
and the time between consecutive alignments of the two planets.

Thereby, using as input the observations of cycle 21 we reproduce the distributions of
activity in the latest three cycles to a satisfactory degree. The model is extended to the
next years, providing predictions for the rest of cycle 24 and cycle 25.

This model describes mainly the central part of the cycles, with phenomenological
propositions about the outer ranges remaining to be quantified in subsequent steps of
the analysis. Other planned optimizations include the use of the flares’ intensity and
other X-ray classes, and precise comparisons to historical records.

Although no proposal is made about the underlying physical mechanism, these results
point strongly to a correlation between the triggering of solar activity and the relevant
position of the gas giants, with the activity increasing and declining respectively with
their approach and retreat. While numerical relations between the time lengths involved
in these effects have been noticed in the past, they were not quantified by using actual
solar events. The present results and further quantification are expected to contribute
to the understanding of the mechanisms involved in solar dynamics, and they could be
employed in long-term forecasting of space weather.
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A Performance and statistical testing

The performance of the model on some of the main features of the cycles and its
correlation with the data are examined in Paragraph A.1 (the tests have similarities to
[2], where the main methods used in practice for the forecasting of solar activity were
evaluated). In Paragraph A.2 it is tested whether a satisfactory agreement between the
data and the overlapping of the two used Gaussians could arise randomly, or if it is
indeed related to the two planets’ synodic period.

A.1 Performance

The performance of the model is tested by using the quantities listed below for describing
some of the cycles’ main features in more specific terms. All comparison is between
the observations and the distribution from the model (Fig.7). The bin with the global
maximum of 252 flares in cycle 21 is excluded from all calculations in Paragraph A.1 as
an outlier. In the following, “maximum count” will refer to the largest number of flares
in a single bin within a specified range.

• Difference in maximum count within the range 0o-45o5 (measured in counts and
in standard deviations).

• Distance of the positions of the maximum count within 0o-45o (in bins).

• Difference in global maximum count (in counts and in deviations).

• Distance of the positions of the cycles’ start, as defined by the first bin with ≥5%
of the maximum count within 0o-45o from data (in bins).

5The range 0o-45o, the “central part” of the cycles, is described more accurately by the model by
construction.
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• Difference in the total length of cycle, as calculated with Eq.1 (in days).

The values of these quantities are given in Table 4. The standard deviation is calculated
from the statistical uncertainty and all applicable sources of systematics (Appendix B.1,
B.2).

In addition, the Pearson correlation coefficient between the distributions of flares from
observations and from the predictions has the values 0.88 and 0.73, within 0o-45o and
in the whole range respectively (Fig.12). In both cases the p-value for this correlation
arising by chance is smaller than 10−7, as calculated from random permutation of the
two sets of datapoints.

Table 4: Values for quantifiers of some of the cycles’ main features, both for each cycle and

for their RMS. The numbers are the absolute difference between the predictions and the data.

Each bin of the two distributions spans 80 days.

C 21 C 22 C 23 C 24 RMS

Difference in max* in 0o-45o

(in counts [and in σs])
33 [1.14] 3 [0.11] 7 [0.41] 2 [0.14] 16.9 [0.61]

Distance between max

in 0o-45o (in bins)
0 0 1 2 1.12

Difference in global max

(in counts [and in σs])
33 [1.14] 27 [0.99] 7 [0.41] 9 [0.63] 22.1 [0.84]

Distance between start

of cycle† (in bins)
3 3 7 3 4.4

Difference in total length

of cycle (in days)
n/a 8 8 n/a -

* “Max” refers to the maximum count. † See text for definition.

A.2 Timing

It will be tested whether a satisfactory agreement between the data and the overlapping
of the two used Gaussians (Table 2) could arise randomly, or if it is indeed connected to
the two planets’ synodic period (Paragraph 2.1). For this, the periodic displacement
between the two Gaussians is let to vary arbitrarily, and the agreement between the
resulting predictions and the data is checked: To do so, while the actual average length
between consecutive alignments is 3,634 days, its value is let to iterate between 2,000 and
5,000 days. For illustration, Fig.13 shows the expected distribution for a hypothetical
length of 2,500. (Only the first 15,000 days are used in the tests.)
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Figure 12: Distribution of counts of flares in the prediction versus observations. Left: Within

the range 0o-45o of each cycle; 48 points. Right: For the whole time range; 121 points.

We apply the Kolmogorov-Smirnov test using the ROOT[9] package, to check the
compatibility of the data with the predicted distributions for each value of the time
length.

Although including the dataset used for the derivation of the model should be avoided
in the Kolmogorov-Smirnov test, it is assumed that in the present case the model was
derived too indirectly from the distribution of cycle 21 (Paragraph 2.1), therefore it is
appropriate to include all cycles in the test. Ideally, the test should be performed on
unbinned data. For this, we perform the test both with the binning used in the rest of
the analysis (80 days per bin) and with one bin per day. (In principle this introduces
a source of uncertainty because of the need to change the constant of the Gaussians
to match the new histogram’s scale; however, the results from the two runs are almost
identical, so this uncertainty was not incorporated in the calculations.)
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Figure 13: An example prediction where the average length between the two planets’ alignments

would be 2,500 days.
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Figure 14: Kolmogorov-Smirnov distances for varying numbers of the length between align-

ments, for data binned in 80 days (black) and with one bin per day (red).

As seen in Fig.14, the tests with the two binnings show a well-defined global minimum
at 3,710 and at 3,740 days respectively, close to the actual value for the average length
between alignments (3,634), while at the same time no similarly strong minima occur for
other lengths. In addition, Appendix B.3 calculates the uncertainty on the results due to
dropping the adjustment term on the displacement during the iterations; the uncertainty
is equal to 13.7%. This makes the results at the minimum and at the actual value lie
less than 2.5 standard deviations away. Overall, the test supports the non-randomness
of the proposed mechanism.

Finally, it can be noted that the chi-square test cannot be used here because of the many
predicted empty bins and their importance. Still, ad hoc modifications on it for evading
the empty bins result in similarly well-defined minima, in proximity to the actual value
of the average length between alignments.

B Systematic uncertainties

B.1 Binning effects

Different choices of binning change the short-scale distribution of flares in each cycle,
a fact which should be reflected in the model’s degree of goodness. Re-deriving the
two Gaussians for different binnings would add complication, since the fit used quasi-
empirical constraints (Paragraph 2.1). Instead, we plot again the number of flares while
varying the number of bins by ±6 around the original number 50, in steps of 2; we
calculate the chi-square over the number of degrees of freedom between the original
prediction and each resulting data distribution; and we use the standard deviation from
all seven results for the uncertainty value. In all cases we retained only the bins between
±1,500 days, for stability and to avoid empty bins. For illustration, the two extreme
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Figure 15: Distribution of flares in cycle 21 for the two extreme tested numbers of bins.

binnings are plotted in Fig.15.

The resulting uncertainty is 13.5% on the original χ2/ndof. This value is applicable to
each bin of the model in all cycles.

B.2 Fluctuations of the established length

In Paragraph 2.2 a hypothesis was made about calculating the middle of a cycle, based
on the average lengths of the two contributing effects (Eq.1):

[displacement] = D + (<11y > − < LJS >) +
LJS– < LJS >

2

The records of the average “11 year” period show a deviation of 10%, while the average
duration between two alignments has a natural fluctuation of 2%. However, the dates of
the alignments are known exactly, while also the deviation from their average value is
taken into account in the formula (in the last term). Therefore, the only uncertainty
entering this calculation comes from the “11 year” average. Its uncertainty of 10% is
propagated to the value of the average difference of the two effects.

As described in Paragraph 2.1, the model is constructed by selecting the lower value
among the two Gaussians in each bin. Therefore the uncertainty is found by centering
the established Gaussian on its two extreme positions for each cycle (i.e. the position
calculated from Eq.1 ±39 days) and taking the difference from the nominal value of the
model in each bin. The resulting uncertainties are shown in Fig.16. They are applicable
to each bin of the model whenever Eq.1 is used, except on cycle 21.
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Figure 16: All flare observations for the last four cycles (green), overlaid with the prediction

distribution (violet). The systematic uncertainty due to fluctuations of the established length

is shown as violet shade. (This source of uncertainty does not apply to cycle 21.)

B.3 Synodic period without adjustment

In Appendix A.2 statistical tests are performed by letting the displacement between
the two Gaussians vary arbitrarily. In that case the increase in the displacement is
constant, while in the actual model the increase is adjusted in each cycle according to
the time between the planets’ alignments (Paragraph 2.2, Eq.1). Therefore, dropping
the adjustment term introduces a source of systematic error in the distributions entering
the statistical tests.

In order to quantify this uncertainty, we use the value of the Kolmogorov-Smirnov
distance for the comparison of the model to the observations, with and without the
adjustment term in Eq.1. The resulting change is 13.7%, and is used as systematic
uncertainty on the results of Appendix A.2.


