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We present the analytical calculation of entanglement entropy for a class of two dimensional
field theories governed by the symmetries of the Galilean conformal algebra, thus providing a rare
example of such an exact computation. These field theories are the putative holographic duals to
theories of gravity in three-dimensional asymptotically flat spacetimes. We provide a check of our
field theory answers by an analysis of geodesics. We also exploit the Chern–Simons formulation of
three-dimensional gravity and adapt recent proposals of calculating entanglement entropy by Wilson
lines in this context to find an independent confirmation of our results from holography.
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Introduction. Entanglement — originally coined
“Verschränkung” by Schrödinger [1] — is one of the most
fascinating and mysterious features of quantum mechan-
ics. It has been the basis of development of new branches
of physics like quantum information and communication
[2]. For these applications, as well as for theoretical anal-
yses, it is useful to quantify the amount of entanglement
of a quantum system, and various measures have been
proposed, see e.g. [3]. From a theoretical perspective par-
ticularly the entropy of entanglement, or entanglement
entropy (EE), has emerged as a valuable tool.

The calculation of EE for interacting quantum field
theories (QFTs) remains a daunting task. One of the few
examples where analytical calculations can be performed
is the EE in two-dimensional (2d) conformal field theories
(CFTs) [4]. Here one can invoke the infinite dimensional
symmetries of the Virasoro algebra — the algebra that
generates conformal transformations in 2d — to simplify
the calculations. E.g. the EE of a strip of length ℓ of a
2d CFT with equal left and right central charges c on the
infinite line is given by [4–6]

SCFT2

EE
=

c

3
ln

ℓ

a
(1)

where a is the lattice size that regulates the ultraviolet
divergences. The problem of calculating EE in QFTs
quickly becomes intractable with increasing dimension
and complexity, since in general there is no infinite di-
mensional symmetry algebra to fall back on.

The holographic principle has played a vital role in the
recent resurgence of EE calculations for QFTs. Accord-
ing to this principle, a theory of (quantum) gravity in
a certain spacetime is completely equivalent to a QFT
without gravity living on the boundary of that space-
time. The celebrated Anti-de Sitter/conformal field the-
ory (AdS/CFT) correspondence has given this bold pro-
posal a firm footing in the context of string theory by re-

lating Type IIB superstring theory on AdS5⊗S5 to N = 4
supersymmetric Yang-Mills theory on its boundary [7].
As a remarkable consequence of holography, the calcu-

lation of EE in CFTs has been conjectured to be equiv-
alent to the computation of the area of an extremal co-
dimension-two-surface in AdS [8]. There are recent devel-
opments which have built towards a proof of this relation
[9–11]. Thus, using holography, the involved calculation
of EE in higher dimensional CFTs has boiled down to the
fairly simple computation of areas of extremal surfaces in
AdS. See [12–27] for selected pre-cursors and elaborations
on the connection between gravity and entanglement.
The present work has two main goals: to calculate EE

for a novel class of QFTs, and to derive EE for the same
class of QFTs holographically.
Related to the first goal, we shall calculate EE for

Galilean conformal field theories (GCFTs), thus provid-
ing a rare example of an exact computation of EE.
Concerning the second goal, 2d GCFTs [28] were pro-

posed as duals [29] to three-dimensional (3d) gravity in
asymptotically flat spacetimes [30]. There has been con-
siderable interest in trying to understand holography in
flat spacetimes in the light of these findings [31–49]. We
shall provide further evidence for a flat space/GCFT
correspondence by holographically calculating EE in 3d
asymptotically flat spacetimes, thereby confirming the 2d
GCFT calculations.
EE in 2d CFTs. Let us now briefly recall the strategy

employed for the calculation of EE in 2d CFTs, starting
with the definition of EE. If ρ is the density matrix of a
quantum system with multiple degrees of freedom, and
the Hilbert space of the system can be written as the
direct productH = HA⊗HB, the reduced density matrix
ρA for the subsystem A is defined by the partial trace over
the Hilbert subspace HB, ρA = TrB ρ. The EE is then
the corresponding von Neumann entropy

SA = −Tr
(

ρA ln ρA
)

. (2)
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EE is conveniently calculated by employing the replica

trick, using Renyi entropies, S
(n)
A = 1

1−n lnTrρnA. EE (2)

emerges as the limit SA = limn→1 S
(n)
A . More specifically,

in a 2d QFT defined on a lattice, where the subsystem
A consists of n disjoint intervals, one computes Renyi

entropy S
(n)
A by making n copies of the system with one

disjoint interval and sewing them together. This defines
an n-sheeted Riemann surface with a partition function

Zn(A) and TrρnA = Zn(A)
Z1(A)n . From this one can calculate

the EE of the system as a limit SA = − limn→1
∂
∂n

Zn(A)
Z1(A)n .

For details of this construction see e.g. [50, 51].
We focus here on the EE of a single interval [u, v] of

length ℓ = |u − v| in an infinitely long one-dimensional
quantum system at zero temperature and recapitulate
the main insights and results. One key ingredient is to
map the n-sheeted Riemann surface Rn to the complex
plane C, where n labels the nth Renyi entropy. An-
other relevant aspect is that in a 2d CFT, the energy-
momentum (EM) tensor on Rn is related to that on C

by T (w) =
(

dz
dw

)2
T (z) + c

12{z, w} where c is the central
charge of the CFT and {, } the Schwarzian derivative.
Taking expectation values of both sides and exploiting
〈T (z)〉 = 0 on C yields

〈T (w)〉Rn
=

c

24

(

1−
1

n2

) (v − u)2

(w − u)2(w − v)2
. (3)

Conformal Ward identities then imply

〈T (w)〉Rn
=

〈T (w)Φ̃n(u)Φ̃−n(v)〉C

〈Φ̃n(u)Φ̃−n(v)〉C
(4)

where Φ̃n, Φ̃−n are twist fields in the 2d CFT, viz., pri-
maries with conformal weights ∆ = ∆̄ = (c/24)(1 −
1/n2). The key observation is that TrρnA transforms un-
der a general conformal transformation as a 2-point func-
tion of such primaries. From this, Calabrese and Cardy

deduced TrρnA ∝
(

v−u
a

)−c(n−1/n)/6
. The ensuing expres-

sion for Renyi entropy

S
(n)
A =

c

6

(

1 +
1

n

)

ln
ℓ

a
(5)

in the limit n → 1 then establishes the result (1) for EE.
GCFT symmetries and correlators. GCFTs are the

non-relativistic analogues of CFTs. They can also be
defined independently from any relativistic parent CFT
[28]. We now build towards our goal of calculating EE in
GCFTs. A first step is to analyze the symmetry algebra,
its highest weight representations and restrictions from
Ward identities on correlation functions. The symmetry
generators Ln, Mn of a 2d GCFT obey

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0 n,m ∈ Z cL, cM ∈ R . (6)

We consider now the representation theory of this
Galilean conformal algebra (GCA) to construct the
Hilbert space of a GCFT. We choose to work with the
highest weight representation [52, 53]. Any state in
this field theory is labeled by two weights L0|hL, hM 〉 =
hL|hL, hM 〉, M0|hL, hM 〉 = hM |hL, hM 〉. Following CFT
literature, we define primary states by demanding that
they be annihilated by all generators Ln, Mn with posi-
tive n. We shall use the plane representation of the GCA
(6)

Ln = xn+1 ∂x + (n+ 1)xny ∂y , Mn = xn+1 ∂y (7)

where x, y are our 2d coordinates. We define the EM
tensor of a GCFT on a plane [54] by

T(1) =
∑

n

(

Ln + (n+ 2)
y

x
Mn

)

x−n−2 (8)

T(2) =
∑

n

Mnx
−n−2 . (9)

An important result is that the 2-point correlator of pri-
mary fields {Φi(xi, yi)} with weights hi

L, h
i
M has a par-

ticularly nice form in the plane representation, fixed by
the symmetries of the GCA (up to normalization):

〈Φ1(x1, y1)Φ
2(x2, y2)〉 ∝ x−2hL

12 e
−2hM

y12
x12 δ

h2

L

h1

L

δ
h2

M

h1

M

(10)

Here and below expressions like x12 always denote differ-
ences between coordinates, x12 = x1 − x2.
The 3-point correlator of the EM tensor with two

primary fields (of weight {hL, hM}) is determined from
Ward identities and the 2-point correlators (10):

〈T(1)(xw, yw)Φ(x1, y1)Φ(x2, y2)〉 =
( x12

xw1xw2

)2

(11)

[

hL − 2hM

( y12
x12

−
yw1

xw1
−

yw2

xw2

)]

x−2hL

12 e−2hM
y12
x12

〈T(2)(xw, yw)Φ(x1, y1)Φ(x2, y2)〉 =
( x12

xw1xw2

)2

(12)

hM x−2hL

12 e−2hM
y12
x12

The 3-point correlators above will play a crucial role in
our derivation of EE for GCFTs.
EE in 2d GCFTs. We are now ready to construct the

EE for a GCFT of an infinite one-dimensional system for
one interval at vanishing temperature.
We intend to use the analogue of (4) in 2d GCFTs

in order to be able to make the statement that also in
GCFTs TrρnA depends only on the form of the 2-point
function of primary operators. We have already com-
puted the right hand side of (4) from symmetry consid-
erations above. For arriving at the left hand side, we
shall employ a limiting technique from 2d CFTs [71].
We need the GCFT equivalent of (3), assuming a smooth



3

non-relativistic limit. The expressions for the GCFT EM
tensor in terms of the original CFT EM tensor read:
T(1)(xw, yw) = limǫ→0

[

T (w) + T̄ (w̄)
]

, T(2)(xw , yw) =

limǫ→0 ǫ
[

T (w)− T̄ (w̄)
]

with w = xw + ǫyw and the
limit is defined by ǫ → 0. Denoting u = x1 + ǫy1 and
v = x2 + ǫy2, this leads to:

〈T(1)(xw, yw)〉Rn
=

(

1−
1

n2

)( x12

xw1xw2

)2

(13)

[cL
24

−
cM
12

( y12
x12

−
yw1

xw1
−

yw2

xw2

)]

〈T(2)(xw, yw)〉Rn
=

(

1−
1

n2

)( x12

xw1xw2

)2 cM
24

(14)

Combining the results (10)-(14) obtains (i = 1, 2)

〈T(i)(x, y)〉Rn
=

〈T(i)(x, y)Φn(x1, y1)Φ−n(x2, y2)〉C

〈Φn(x1, y1)Φ−n(x2, y2)〉C
(15)

and determines the weights of the 2d GCFT twist fields
Φn(x, y) as hL = cL

24

(

1− 1
n2

)

and hM = cM
24

(

1− 1
n2

)

.
Arguments analogous to the ones for 2d CFTs then per-
mit us to infer

Tr ρnA = kn〈ΦhL,hM
(x1, y1)ΦhL,hM

(x2, y2)〉
n
C

= kn x
−

cL
12

(n− 1

n
)

12 exp
[cM
12

(n−
1

n
)
y12
x12

]

(16)

for some constants kn. We fix k1 conveniently.
We derive EE as before from a limit of Renyi entropies,

SA = − limn→1
∂
∂nTr ρ

n
A, and finally obtain

SGCFT2

EE
=

cL
6

ln
ℓx
a

+
cM
6

ℓy
ℓx

(17)

where ℓx = ax12, ℓy = ay12, and a is again the lattice size
that regularizes ultra-violet divergences. The EE formula
(17) is one of our main results and completes the first
goal, namely to calculate EE for a 2d GCFT. Note the
similarity of the first term in the GCFT EE with the
expression for the CFT EE (1). This is expected, since
in theories with vanishing cM the non-trivial part of the
GCA (6) reduces to a single copy of the Virasoro algebra
[31, 53].
Generalization to finite temperature or finite size. We

generalize now our main result (17), starting with the
consideration of finite temperature T = β−1. We fol-
low again the lead of Calabrese and Cardy [4]. For this
purpose, we utilize the fact that Tr ρnA behaves like the
2-point function of some primary fields in a GCFT. We
use the transformation laws of the fields from the plane to
the cylinder elucidated in [44] to find after some algebra:

S =
cL
6

ln
(β

π
sinh

(π

β
ξ12

)

)

+
πcM
6β

ρ12 coth
(π

β
ξ12

)

(18)

This is the EE for a mixed state in the 2d GCFT at finite
temperature β−1.

The result (18) has the expected behaviour under two
extreme limits. The first limit, ξ12, ρ12 ≪ β, gives back
the answer on the plane (17) with ξ12 → ℓx/a and ρ12 →
ℓy/a. The second limit, ξ12, ρ12 ≫ β, yields

S =
π

6β

(

cL ξ12 + cM ρ12
)

+
cL
6

lnβ + . . . (19)

where the ellipsis denotes temperature-independent and
subleading terms in β. To leading order the EE (19) is ex-
tensive, i.e., linear in the separations, which is completely
analog to what happens in 2d CFTs [4]. The subleading,
logarithmic, term is universal, depending only on cL.
To find the entropy of a subsystem of length (ξ12, ρ12)

in a finite system of length L in its ground state, we use a
similar analysis, replacing β → L (and orienting the cuts
along which the twist operators lie perpendicular to the
previous case, which results in some changes). We then
obtain a result for EE in systems of length L:

S =
cL
6

ln
(L

π
sin

(π

L
ξ12

)

)

+
πcM
6L

ρ12 cot
(π

L
ξ12

)

(20)

Towards higher dimensions. One of the great advan-
tages of GCFTs is that the infinite dimensional symme-
try extends to all spacetime dimensions. These have been
realized in physical systems e.g. hydrodynamics [28] and
more recently in Galilean electromagnetic theories [55].
It is plausible that the constructions above would work
similarly for higher dimensional cases.
Holographic EE in GCFT. In the remainder of our

work we focus on the second goal, namely to derive our
results for EE holographically. As a first step, we summa-
rize aspects of proposed 3d gravity duals to 2d GCFTs.
A minimal requirement for a putative gravity dual is that
its asymptotic symmetries match the symmetries of the
corresponding QFT. Flat space holography in 3d real-
izes this requirement [29, 30]. (See [56] for a different
approach to holography and entanglement in flat space.)
Flat space geodesics. Following the Ryu–Takayanagi

prescription [8] one can determine EE holographically
in 3d (Einstein) gravity by computing the length of
geodesics on equal time slices. To determine the rele-
vant geodesics we consider the most general zero-mode
solutions of 3d flat space Einstein gravity, given by the
line-element [34]

ds2 = M du2 − 2 du dr + J du dϕ+ r2 dϕ2 (21)

with mass parameter M and angular momentum param-
eter J . For M = J = 0 the solution is known as null
orbifold [57–60]. For M = −1 and J = 0 the solution
is (global) flat space. The more generic case M ≥ 0
and J 6= 0 corresponds to flat space cosmology solutions
[61, 62], which we will not consider in the current work.
The central charges for flat space Einstein gravity are

cL = 0 and cM = 3/GN , where GN is the 3d Newton con-
stant [30]. Therefore, the only term that remains in EE
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for flat space Einstein gravity is proportional to ℓy [ρ12]
on the plane at zero temperature [at finite temperature
or for finite size], see (17) [(18) or (20)]. In the coordi-
nates above this separation translates into the separation
u12. This means that taking a constant u-slice we should
obtain vanishing EE. Indeed, this is precisely what one
obtains from calculating the length of such geodesics.
While the conclusion above shows consistency of the

holographic calculation with the GCFT results, it is more
interesting to consider the general case where both cen-
tral charges are non-zero. For this purpose, we no longer
can consider geodesics of Einstein gravity solutions.
Holographic EE from Chern–Simons formulation.

Einstein gravity in 3d can conveniently be reformulated
as a Chern–Simons gauge theory [63, 64] with the action

ICS [A] =
k

4π

∫

〈A ∧ dA+ 2
3A ∧A ∧A〉, (22)

where k is the Chern-Simons level, A takes values in some
gauge algebra g and 〈. . .〉 denotes a suitable invariant
bilinear form on the gauge algebra. In flat space the
gauge algebra is given by g = isl(2), which is precisely
the algebra (6) restricted to n = 0,±1. The flat space
connection describing spacetimes (21) reads [65]

A = b−1
(

d+a
)

b with b = e
r
2
M

−1 , (23)

a =
(

M1 −
M

4
M−1

)

du+
(

L1 −
M

4
L−1 −

J

4
M−1

)

dϕ .

Concurrent with the Grassmanian interpretation of [43]
we refer to the generators Ln (Mn) as “even” (“odd”).
In [66–68] it has been argued for AdS3 that using the

Chern–Simons formalism holographic EE of a given inter-
val at the boundary of AdS is given by (the logarithm of)
a Wilson line attached at the endpoints of this interval.

SEE = − ln [WR(C)]

WR(C) = TrR

(

Pe
∫
C

A
)

=

∫

DUe−S(U ;A)C
(24)

Here R denotes a suitable representation of the symme-
try algebra at hand, P stands for path-ordering, C de-
notes the contour of the Wilson line, and U refers to a
topological probe exploring the bulk geometry.
For flat space we assume a split of the probe U and the

action S(U ;A)C into even and odd parts labeled by L
and M , respectively, i.e., U = ULUM , and S(U ;A)C =
SL(UL;AL)C + SM (UM ;AM )C , where A = AL + AM .
Using this assumption the even action SL is given by

SL =

∫

C

ds
(

〈PL(DLUL)U
−1
L 〉L+λL

(

〈P 2
L〉L−CL

2

)

)

(25)

whereDL = ∂s+AL, PL is the canonical momentum con-
jugate to UL, and λL is a Lagrange multiplier that sets
the quadratic Casimir to the right value CL

2 = c2L/288.
Note that at this stage we do no longer assume that we

are necessarily dealing with Einstein gravity, where cL
vanishes; an example [31] for a theory with cL 6= 0 is
topologically massive gravity [69] whose AdS EE was de-
rived holographically in [68]. The brackets 〈. . .〉L denote
a suitable invariant bilinear form satisfying 〈PL, PL〉L =

−P
L

−1

L PL1

L + 1
2P

L0

L PL0

L −PL1

L P
L

−1

L . The odd action SM

(and all quantities therein) are obtained from the even
action (25), replacing everywhere indices L → M .
We determine now the equations of motions from these

two actions and find solutions to them, using the so-
called “nothingness” trick: we first solve the equations
of motion for the trivial case AL = AM = 0 and de-
termine U

(0)
L,M and P

(0)
L,M . Then we use a (large) gauge

transformation U(s) = g(s)U
(0)
L U

(0)
M g−1(s), where the

group element g(s) is in the component continuously
connected with the identity to obtain solutions for non-
trivial gauge fields AL,M [72]. The actions SL and SM

then reduce on-shell to Son-shell
L,M = −2∆αL,MCL,M

2 with

∆αL,M = αL,M (sf )− αL,M (0) determined by U
(0)
L,M .

The only thing left to do is to choose suitable boundary
conditions for the topological probe U(s) at the begin-
ning s = 0 and the end s = sf of the boundary interval
and to determine ∆αL,M . The reason why it is sufficient
to determine ∆αL,M is that in the semiclassical limit
∫

DUe−S(U ;A)C ∼ e−S(U ;A)C and thus

SEE = −2∆αLC
L
2 − 2∆αMCM

2 . (26)

We have found suitable boundary conditions, whose de-
tailed discussion will be presented elsewhere [70].
From the non-trivial connection (23) and its split into

even and odd parts, AL + AM = g dg−1 with g =
b−1e−

∫
ai dx

i

, one can now readily obtain the EE for
various interesting spacetimes. We collect these results
below. We define ℓu = uf − u0 and ℓϕ = ϕf − ϕ0;
the quantity a is again a regularizing cut-off. Applying
the procedure above yields the EE of the null orbifold
(M = J = 0), to be compared with (17).

Snull

EE
=

cL
6

ln
ℓϕ
a

+
cM
6

ℓu
ℓϕ

(27)

Similarly, for global flat space (M = −1, J = 0) we
obtain the EE [to be compared with (20) for L = 2π]

Sflat

EE
=

cL
6

ln
(

2 sin
ℓϕ
2

)

+
cM
12

ℓu cot
ℓϕ
2

. (28)

The holographic EE results above are in precise agree-
ment with the ones obtained on the field theory side.
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Stéphane Detournay, Reza Fareghbal, Michael Gary,
Nabil Iqbal, Juan Jottar, Esperanza Lopez, Jan Rosseel,
Joan Simón, Stefan Stricker, Tadashi Takayanagi and
Erik Tonni for discussions.
AB was supported by an INSPIRE award of the De-

partment of Science and Technology, India and by the



5

project M 1508 of the Austrian Science Fund (FWF). DG
and MR were supported by the START project Y 435-
N16 of the FWF and the FWF projects I 952-N16, I 1030-
N27 and P 27182-N27.

∗ Electronic address: a.bagchi@iiserpune.ac.in
† Electronic address: rudranil@iiserpune.ac.in
‡ Electronic address: grumil@hep.itp.tuwien.ac.at
§ Electronic address: max.riegler@yukawa.kyoto-u.ac.jp

[1] E. Schrödinger, “Die gegenwärtige Situation in der
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