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Abstract

Adinkras are graphical tools created for the study of representations in supersym-
metry. Besides having inherent interest for physicists, adinkras offer many easy-to-state
and accessible mathematical problems of algebraic, combinatorial, and computational
nature. We use a more mathematically natural language to survey these topics, suggest
new definitions, and present original results.

1 Introduction

In a series of papers starting with [8], different subsets of the “DFGHILM collaboration”
(Doran, Faux, Gates, Hübsch, Iga, Landweber, Miller) have built and extended the ma-
chinery of adinkras. Following the spirit of Feyman diagrams, adinkras are combinatorial
objects that encode information about the representation theory of supersymmetry alge-
bras. Adinkras have many intricate links with other fields such as graph theory, Clifford
theory, and coding theory. Each of these connections provide many problems that can be
compactly communicated to a (non-specialist) mathematician.

This paper is a humble attempt to bridge the language gap and generate communication.
We redevelop the foundations in a self-contained manner in Sections 2 and 4, using different
definitions and constructions that we consider to be more mathematically natural for our
purposes. Using our new setup, we prove some original results and make new interpretations
in Sections 5 and 6. We wish that these purely combinatorial discussions will equip the
readers with a mental model that allows them to appreciate (or to solve!) the original
representation-theoretic problems in the physics literature. We return to these problems in
Section 7 and reconsider some of the foundational questions of the theory.

2 Definitions

We assume basic notions of graphs. For a graph G, we use E(G) to denote the edges of
G and V (G) to denote the vertices of G. We deviate from the original literature1, but we

1In the existing literature, the notion of posets is created from scratch without ever being referred to
as such. We make a more compact presentation, using preexisting language when possible. Furthermore,
the existing literature defines adinkras first and then defines topologies and chromotopologies as coming
from adinkras (i.e. what we call adinkraizable). We modualarize the data and take a “ground-up” approach
instead.
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believe our approach yields slightly cleaner and more general mathematics while getting to
the same destinations.

We assume most basic notions of posets (there are many references, including [21]). In
this paper, we think of each Hasse diagram for a poset as a directed graph, with x→ y an
edge if y covers x. Thus it makes sense to call the maximal elements (i.e. those x with no
y > x) sinks and the minimal elements sources.

A ranked poset2 is a poset A equipped with a rank function h : A → Z such that for
all x covering y we have h(x) = h(y) + 1. There is a unique rank function h0 among these
such that 0 is the lowest value in the range of h0, so it makes sense to define the rank of an
element v as h0(v). The largest element in the range of h0 is then the length of the longest
chain in A; we call it the height of A.

2.1 Topologies, Chromotopologies, and Adinkras

An n-dimensional adinkra topology, or topology for short, is a finite connected simple graph
A such that A is bipartite and n-regular (every vertex has exactly n incident edges). We
call the two sets in the bipartition of V (A) bosons and fermions, though the actual choice
is mostly arbitrary and we do not consider it part of the data.

A chromotopology of dimension n is a topology A such that the following holds.

• The elements of E(A) are colored by n colors, which are elements of the set [n] =
{1, 2, . . . , n} unless denoted otherwise, such that every vertex is incident to exactly
one edge of each color.

• For any distinct i and j, the edges in E(A) with colors i and j form a disjoint union
of 4-cycles.

There are further properties we can put on a chromotopology:

1. ranked: we give A additional structure of a ranked poset3, with rank function hA
(though we will usually just write h). By this, we mean that we identify A with the
Hasse diagram of some ranked poset and assign the corresponding ranks to V (A). In
this paper, such as in Figure 1, we will usually represent ranks via vertical placement,
with higher h corresponding to being higher on the page.

2. dashed: we add an odd dashing A, which is a map d : E(A)→ Z2 such that the sum
of d(e) as e runs over each 2-colored 4-cycle (that is, a 4-cycle of edges that use a total
of 2 colors) is 1 ∈ Z2. Visually, we can think of the odd dashing as making each edge
of A either dashed or solid, such that every 2-colored 4-cycle contains an odd number
of dashes. We will slightly abuse notation and write d(v, w) to mean d((v, w)), where
(v, w) is an edge from v to w.

2This is also often called a graded poset, though there are similar but subtly different uses of that name.
For this paper, we use ranked to avoid ambiguity.

3In the existing literature, such as [5], these adinkras are constructed as part of the data of the graph,
using directed edges to encode cover relations (the graph with the poset structure is called engineerable),
developing the notion of posets from scratch without ever referring to them as such. In this paper, we
separate the poset structure from the graph and refer to the well-developed notion of ranked poset.
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An adinkra is a chromotopology with both of these properties: i.e. a dashed ranked chro-
motopology. We call a topology or chromotopology that can be made into an adinkra
adinkraizable.

000

010

101

111

100 001

110 011

h = 0

h = 1

h = 2

h = 3

Figure 1: An adinkra with vertices labeled by 3 bits. We can take the bosons to be either
{000, 011, 101, 110} or {001, 010, 100, 111} and take the fermions to be the other set.

Many of our proofs involve algebraic manipulation. To make our treatment more stream-
lined, we now set up algebraic interpretations of our definitions.

• The condition of A being a chromotopology is equivalent to having a map qi : V (A)→
V (A) for every color i that sends each vertex v to the unique vertex connected to
v by the edge with color i, such that the different qi commute (equivalently, the qi
generate a free Zn

2 action on V (A). The well-definedness of the qi corresponds to the
edge-coloring condition and the commutation requirement corresponds to the 4-cycle
condition. Note that qi is an involution, as applying qi twice simply traverses the
same edge twice. Furthermore, qi sends any boson to a fermion, and vice-versa.

• The condition of a chromotopology A being dashed (with dashing function d) is equiv-
alent to having the maps qi anticommute, where we define qi : R[V (A)] → R[V (A)]
for every color i by qi(v) = d(v, qi(v))qi(v).

Finally, we define a few forgetful functions in the intuitive way: for any (possibly ranked
and/or dashed) chromotopology A, we will use “the chromotopology of A” to mean the
vertex- and edge-colored graph of A, forgetting all other information. We similarly say “the
topology of A” to mean the graph of A with no colors of any sort.

2.2 Multigraphs

In Section 4.2, multigraphs come up naturally. Thus, we generalize some of our definitions
to multigraphs.

Let a pretopology be an n-regular finite connected multigraph (that is, we allow loops
and multiple-edges). Let a prechromotopology be a generalization of chromotopology where

3



the graph is allowed to be a pretopology. The condition is still that the qi must commute.
However, the combinatorial version of the rule (that the union of edges of different colors i
and j form a disjoint union of 4-cycles) must be extended to allow degenerate 4-cycles that
use double-edges or loops. Define the dashed and ranked properties on prechromotopologies
and preadinkras analogously, again extending our condition for 2-colored 4-cycles to allow
double-edges and loops.

The double-edges actually do not introduce any new dashed prechromotopologies (and
thus preadinkras), because the existence of a double-edge immediately gives a degenerate
4-cycle, and the sum of dashes over a degenerate 4-cycle must be even. Loops, however,
create new preadinkras. Figure 2 gives an example.

0

1

Figure 2: A preadinkra with two loops.

3 Physical Motivation

The reader is already equipped to understand the rest of the paper (with the exception of
Section 7) with no knowledge from this section. However, we hope our brief outline will
serve as enrichment that may provide some additional intuition, as well as provide a review
of the original problems of interest (where much remains to be done). While knowledge of
physics will help in understanding this section, it is by no means necessary. We have neither
the space nor the qualification to give a comprehensive review, so we encourage interested
readers to explore the original physics literature.

The physics motivation for adinkras is the following: “we want to understand off-shell
representations of the N -extended Poincaré superalgebra in the 1-dimensional worldline.”
There is no need to understand what all of these terms mean4 to appreciate the rest of the
discussion; we now sketch the thinking process that leads to adinkras.

Put simply, we are looking at the representations of the algebra po1|N generated by N+1
generators Q1, Q2, . . . , QN (the supersymmetry generators) and H = i∂t (the Hamiltonian),
such that

{QI , QJ} = 2δIJH,

[QI , H] = 0.

Here, δ is the Kronecker delta, {A,B} = AB + BA is the anticommutator, and [A,B] =
AB −BA is the commutator. We can also say that po1|N is a superalgebra where the Qi’s

4The author certainly does not.
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are odd generators and H is an even generator. Since H is basically a time derivative, it
changes the engineering dimension (physics units) of a function f by a single power of time
when acting on f .

ConsiderR-valued functions {φ1, . . . , φm} (the bosonic fields or bosons) and {ψ1, . . . , ψm}
(the fermionic fields or fermions), collectively called the component fields5. We want to
understand representations of po1|N acting on the following infinite basis:

{HkφI , H
kψJ | k ∈ N; I, J ≤ m}.

There’s a subtlety here, as these infinite-dimensional representations are frequently called
“finite-dimensional” by physicists, who would just call the {φI} and the {ψI} as the “basis,”
emphasizing the finiteness of m. A careful treatment of this is given in [3].) A long-open
problem is:

Question 3.1. What are all such “finite-dimensional” representations of po1|N? What if
we extend to higher dimensions (we will explain what this means to Section 7.4)?

In particular, we want to understand representations of po1|N satisfying some physics
restrictions (most importantly, having the supersymmetry generators send bosons to only
fermions, and vice-versa; this kind of “swapping symmetry” is what supersymmetry tries
to study). Understanding all such representations seems intractible, so we restrict our
attention to representations where the supersymmetry generators act as permutations (up
to a scalar) and also possibly the Hamiltonian H = i∂t on the basis fields: we require that
for any boson φ and any QI ,

QIφ = ±(−iH)sψ = ±(∂t)sψ,

where s ∈ {0, 1}, the sign, and the fermion ψ depends on φ and I. We enforce a similar
requirement

QIψ = ±i(−iH)sφ = ±i(∂t)sφ

for fermions. We call the representations corresponding to these types of actions adinkraic
representations. For each of these representations, we associate an adinkra. We now form
a correspondence between our definition of adinkras in Section 2.1 and our definition for
adinkraic representations.

adinkras representations
vertex bipartition bosonic/fermionic bipartition

colored edges and qI action of QI without the sign or powers of (−iH)
dashing / sign in qI sign in QI

change of rank by qI and qI powers of (−iH) in QI

rank function partition of fields by engineering dimension

To summarize,

5The fact that the two cardinalities match come from the physics assumption that the representations
are off-shell ; i.e. the component fields do not obey other differential equations.
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An adinkra encodes a representation of po1|N . An adinkraic representation is a repre-
sentation of po1|N that can be encoded into an adinkra.

So instead of attacking Question 3.1 head-on, we focus on the following problem instead:

Question 3.2. What are all the adinkraic representations of po1|N?

The set of adinkraic representations is already rich enough to contain representations
of interest. When the poset structure of our adinkra A is a boolean lattice, we get what
[4] calls the exterior supermultiplet, which coincides with the classical notion of superfield
introduced in [19]. When the poset of A is a height-2 poset (in which case we say that A is
a valise), we get [4]’s Clifford supermultiplet. By direct sums, tensors, and other operations
familiar to the Lie algebras setting, it is possible to construct many more representations
(see [4] and [6]), a technique that has been extended to higher dimensions in [15].

4 Topologies and Chromotopologies

In this section, we study prechromotopologies, chromotopologies, and adinkraizable chro-
motopologies. Compared to the relevant sections of [4] and [6], our approach is more general,
though we owe many ideas to the original work. There is a pleasant connection to codes
and Clifford algebras.

We now give a quick review of codes (there are many references, including [16]). See
Appendix A for a review of Clifford algebras and some related results we will need. An n-
bitstring is a vector in Zn

2 , which we usually write as b1b2 · · · bn, bi ∈ Z2. We distinguish two
n-bitstrings

−→
1n = 11 . . . 1 and

−→
0n = 00 . . . 0, and when n is clear from context we suppress

the subscript n. The number of 1’s in a bitstring v is called the weight of the string, which
we denote by wt(v). We use v to denote the bitwise complement of v, which reverses 0’s
and 1’s. For example, 00101 = 11010. An (n, k)-linear binary code (for this paper, we will
not talk about any other kind of codes, so we will just say code for short) is a k-dimensional
Z2-subspace of bitstrings. A code is even if all its bitstrings have weight divisible by 2 and
doubly even if all its bitstrings have weight divisible by 4.

We now introduce the key running example throughout our paper. Define the n-
dimensional hypercube to be the graph with 2n vertices labeled by the n-bitstrings, with
an edge between two vertices if they differ by exactly one bit. This graph is bipartite and
n-regular. Thus, it has the structure of a topology, which we can call the n-cubical topology,
or In. Now, if two vertices differ at some bit i, 1 ≤ i ≤ n, color the edge between them
with the color i. The 2-colored 4-cycle condition holds, so we get a chromotopology Inc , the
n-cubical chromotopology. Figure 3 shows I3c ; our earlier example adinkra in Figure 1 also
had this chromotopology.

4.1 The Valise

Note that any bipartite prechromotopology (including all chromotopologies) A can be
ranked as follows: take one choice of bipartition of V (A) into bosons and fermions. Assign
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111 011

101 001

110 010

100 000

Figure 3: The hypercube chromotopology I3c .

the rank function h to take values 0 on all bosons and 1 on all fermions, which creates a
height-2 poset. We call the corresponding ranked prechromotopology a valise. Because we
could have switched the roles of bosons and fermions, each bipartite prechromotopology
gives rise to exactly two valises.

111

101

010

000110 011

100 001

Figure 4: A valise with topology I3.

4.2 Graph Quotients and Codes

In this section, we recover the main result (Theorem 4.5) classifying adinkraizable chro-
motopologies from the existing literature. However, we take a more general approach with
multigraphs6 and also classify prechromotopologies and chromotopologies.

Consider the n-cubical chromotopology Inc . For any linear code L ⊂ Zn
2 , the quotient

Zn
2/L is a Z2-subspace. Using this, we define the map pL, which sends Inc to the following

prechromotopology, which we call the graph quotient (or quotient for short) Inc /L:

• let the vertices of Inc /L be labeled by the equivalence classes of Zn
2/L and define pL(v)

to be the image of v under the quotient Zn
2/L. When L is an (n, k)-code, the preimage

over every vertex in Inc /L contains 2k vertices, so Inc /L has 2n−k vertices.

• let there be an edge pL(v, w) in Inc /L with color i between pL(v) and pL(w) in In/L
if there is at least one edge with color i of the form (v′, w′) in Zn

2 , with v′ ∈ p
−1
L (v)

and w′ ∈ p−1L (w).
6The existing literature only considers quotients which are simple graphs, though double edges occur

naturally in the quotient. An alternate way to avoid multigraphs would be to define the quotient to
identify differently-colored multiple-edges as a single edge, but then the number of colors would change
under a quotient and we lose information. We take the following compromise: for classification, we use our
approach since we feel it is the most natural and inclusive setup, but afterwards we will respect the original
literature and focus on adinkraizable chromotopologies (which have simple graphs).
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Every vertex in Inc /L still has degree n (counting possible multiplicity) and the commutivity
condition on the qi’s is unchanged under a quotient, so Inc /L is indeed a prechromotopology.
Let the pretopology In/L be the underlying multigraph of Inc /L. We now prove some
properties of the quotient.

Proposition 4.1. The following hold for A = In/L, where L is a code.

1. A has a loop if and only if L contains a bitstring of weight 1; A has a double edge if
and only if L contains a bitstring of weight 2.

2. A can be ranked if and only if A is bipartite, which is true if and only if L is an even
code.

Proof. 1. Suppose A has a loop. This means some edge (v, w) in Inc has both endpoints
v and w mapped to the same vertex in the quotient. Equivalently, (v − w) ∈ L.
However, v and w differ by a bitstring of weight 1. Suppose A has a double edge
(v, w) with colors i and j. Since q1(q2(v)) = v in A = Inc /L, for some v′ ∈ p−1L (v),
we must have in Inc that q1(q2(v′))− v′ is in L. But this is a weight 2 bitstring with
support in i and j. The logic is reversible in both of these situations.

2. Suppose A were not bipartite, then A has some odd cycle. One of the preimages of
this cycle in Inc is a path of odd length from some v to some w that both map to
the same vertex under the quotient (i.e. v − w ∈ L). Since each edge changes the
weight of the vertex by 1 (mod 2), v−w must have an odd weight. Since v−w ∈ L,
L cannot be an even code. In the other direction, if L were an even code such odd
cycles cannot occur.

Recall that any bipartite prechromotopology can be ranked by making a valise (see
Section 4.1). If A can be ranked via a rank function h, the sets {v ∈ V (A) | h(v) ∼= 0
(mod 2)} and {v ∈ V (A) | h(v) ∼= 1 (mod 2)} must be a bipartition of A because all
the edges in A change parity of h.

The most difficult condition to classify is dashing. For this proof, we need the material
from Appendix A. Let a dashing code be a code where the following two conditions hold:
first, all bitstrings in the code must have weight 0 or 1 (mod 4); second, for any two
bitstrings w1 and w2, we have

(w1 · w2) + wt(w1) wt(w2) = 0 (mod 2),

where the first term is the dot product in Zn
2 . The following result extends the combination

of ideas used in [6, Construction 3.1] and [4, Theorem 4.2].

Proposition 4.2. The prechromotopology A = Inc /L can be dashed if and only if L is a
dashing code.

Proof. Given a bitstring v = v1v2 · · · vn, define qv to be the map qvnn · · · q
v1
1 .

Suppose we have an odd dashing. Let v and w be codewords in L. Both qv and qw
take any vertex to itself in R[V (A)] with possibly a negative sign, since the qi are basically
the qi with possibly a sign, and following a sequence of qi corresponding to a codeword is
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a closed loop in Inc /L. This means qv and qw must commute; furthermore, q2v must be the
identity map for any v ∈ L. By Lemma A.1, this is exactly the condition required for L
being a dashing code.

Now, suppose L were a dashing code. Then by Proposition A.2, we can find a sign
function s such that {s(v) clif(v) | v ∈ L} form a subgroup SMonL ⊂ SMon, the signed
monomials of Cl(n). This gives a well-defined action of SMon on SMon/SMonL via
left multiplication while possibly introducing signs. The cosets of SMonL under SMon
naturally correspond to V (A), so we can define qi(v) to introduce the same sign as γi
on clif(v) ∈ SMon/SMonL. Since we have a Clifford algebra action, we get the desired
anticommutation relations between qi and thus an odd dashing.

Quotients of Inc are prechromotopologies. Surprisingly, the converse is also true, which
gives us our main classification:

Theorem 4.3. Prechromotopologies are exactly quotients Inc /L for some code L.

Proof. Take a prechromotopology A. Consider the abelian group G acting on V (A) gen-
erated by the qi. The elements of G can be written as g = qs11 q

s2
2 · · · qsnn , where si ∈ Z2

for all i. Consider the isomorphism φ : G → L which sends such a g to the n-bitstrings
s1s2 · · · sn ∈ Zn

2 . Take any vertex v0 ∈ V (A) and consider its stabilizer group H under G.
φ(H) is a subspace of Zn

2 and thus must be some code L. Any vertex v is equal to g(v0)
for some g ∈ G, so we may label v with the coset φ(g)+L. It is easy to check the resulting
prechromotopology is exactly the one produced by the quotient Inc /L.

Combining Proposition 4.1 and Theorem 4.3 immediately gives the classification of all
chromotopologies and adinkraizable chromotopologies:

Theorem 4.4. Chromotopologies are exactly quotients Inc /L, where L is an even code with
no bitstring of weight 2.

Theorem 4.5 (DFGHILM, [4, Theorem 4.1] and [6, Section 3.1]). Adinkraizable chromo-
topologies are exactly quotients Inc /L, where L is a doubly even code.

Thanks to Theorem 4.3, we can assume the following:

From now on, any prechromotopology (including chromotopologies) A we discuss comes
from some (n, k)-code L(A) = L. If L is an (n, k)-code, we say that the corresponding
A is an (n, k)-prechromotopology (or chromotopology).

An (n, 0)-prechromotopology is exactly the n-cubical chromotopology, corresponding to
the trivial code {−→0 }. The first non-cubical chromotopology, shown in Figure 5, is the result
of quotienting the 4-cubical topology by the code L = {0000, 1111}, the smallest non-trivial
doubly-even code. It has the topology of the bipartite graph K4,4.

While we have “solved” the problem of classifying adinkraizable chromotopologies by
reducing it to that of classifying doubly-even linear codes, the theory of these codes is very
rich and nontrivial. Computationally, [18] contains the current status of the classification
through an exhaustive search. Interestingly, when examining irreducible adinkratic repre-
sentations, self-orthogonal codes come up. Self-orthogonal codes form a well-studied subset
of codes. We talk more about this in Section 7.

9



A

CB D E

H’ G’ F’ HGF

D’E’ C’ B’

A’

A

CB D E

HGF

Figure 5: The topologies I4 and I4/{0000, 1111}. Labels with the same letter are sent to
the same vertex.

4.3 A Homological View

From the theorems in Section 4.2, we see that the n-cubical chromotopologies Inc look like
universal covers in the sense that everything else come from their quotients. We make this
intuition rigorous in this section with the language of homological algebra. Any standard
introduction, such as [14], is more than sufficient for our purposes.

We work over Z2. Construct the following 2-dimensional complex X(A) from a chromo-
topology A. Let C0 be formal sums of elements of V (A) and C1 be formal sums of elements
of E(A). For each 2-colored 4-cycle C of A, create a 2-cell with C as its boundary as a
generator in C2, the boundary maps {di : Ci → Ci−1} are the natural choices (we do not
worry about orientations since we are using Z2), giving homology groups Hi = Hi(X(A)).
The most important observation about our complex X(A) is the following, which we return
to in Section 5.4.

Proposition 4.6. Let A be an (n, k)-adinkraizable chromotopology corresponding to the
code L. Then X(A) = X(Inc )/L as a quotient complex, where L acts freely on X(Inc ). We
have that X(Inc ) is a simply-connected covering space of X(A), with L the group of deck
transformations.

Proof. The fact that X(A) is a quotient complex is already evident from the construction
of the graph quotient, since we have restricted to simple graphs (recall that adinkraizable
chromotopologies have simple graphs). The more interesting statement is that X(In) is
simply connected. A cute way to see this is to note that X(In) is the 2-skeleton of the
n-dimensional (solid) hypercube Y . Thus, X(In) and Y must have matching H1 and π1.
But Y is obviously simply-connected.

4.4 Adinkra Decomposition

Finally, we introduce a notion designed to reduce the complexity of chromotopologies. Say
that a color i decomposes a chromotopology A if removing all edges of color i splits A into
2 separate connected components. Our definition was inspired by observations in [6], where
certain adinkras were called 1-decomposable.
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Lemma 4.7. The color i decomposes the chromotopology A if and only if for all d ∈ L(A),
the i-th bit of d is 0.

Proof. The condition that the i-th bits of all codes in L(A) are 0 is equivalent to the
condition that the vertices in Inc /L correspond to equivalence classes v = {vi} where all of
the vi have the same i-th bit. Thus, when this condition is met we can split the vertices in
Inc /L into two classes, A0 and A1, where vertices in A0 have 0 as the i-th bit and vertices in
A1 have 1 as the i-th bit. Now, if vertices v ∈ A0 and w ∈ A1 have an edge corresponding
to bit j 6= i, they must correspond to two bitstrings v′ and w′ where qj(v′) = w′. But this
is impossible, since we know all elements in p−1L (v) have 0 in the i-th bit and the opposite
is true for p−1L (w). Thus, such two vertices v and w can only have edges corresponding to
bit i, and this is equivalent to saying that i decomposes A.

On the other hand, if i decomposes A, let the two connected components have vertex
sets A0 and A1, take some edge (v, w) in A with v ∈ A0 and w ∈ A1. The edge must have
color i. Now, take a preimage v′ ∈ p−1L (v). If any bitstring d ∈ L(A) with weight k has
1 as the i-th bit, then we can get from v′ to some w′ ∈ A via k − 1 steps corresponding
to the colors in the support of d that are not i. Under pL, this walk sends w′ to w, so we
have a connected path between v and w in A without using color i, a contradiction since i
decomposes A.

Corollary 4.8. Every color in [n] decomposes Inc .

In the situation where Lemma 4.7 holds, we say that i decomposes A into A0 and A1,
or A = A0 qi A1, if removing all edges with color i creates two disjoint chromotopologies
A0 and A1, which are labeled and colored in a natural fashion, equipped with an inclusion
inc on their vertices that map into V (A). Formally:

• V (A) can be parititioned into two sets V (A|0) and V (A|1), where vertices in V (A|0)
have 0 in the i-th bit (by Lemma 4.7, this is a well-defined notion) and vertices in
V (A|1) have 1 in the i-th bit. Furthermore, all edges between V (A|0) and V (A|1) are
of color i.

• define A0 to be isomorphic to the edge-colored graph induced by vertices in V (A|0),
where any bitstring v = (b1b2 · · · bn) in the vertex label class of v′ ∈ V (A|0) is sent to
the (n − 1)-bitstring (b1b2 · · · b̂i · · · bn), where we remove the bit bi. Color the edges
analogously with colors in {1, 2 · · · , î, · · · , n}. Define A1 in the same way with V (A|1)
instead of V (A|0).

• define the maps inc(b1b2 . . . bn−1, j → i) = b1 . . . bi−1jbi . . . bn−1, which inserts j into
the i-th place of an (n − 1)-bitstring to create an n-bitstring. If A = A0 qi A1, let
inc(v) send a vertex v ∈ Aj to inc(v, j → i) for j ∈ {0, 1}. Lemma 4.7 gives that the
union of the image of V (A0) and V (A1) under inc is exactly V (A).

If A has the additional structure of a ranked chromotopology, we can say more. Suppose
A = A0 qi A1. Now, let z0 = inc(

−−→
0n−1, 0 → i) and z1 = inc(

−−→
0n−1, 1 → i) be elements

in V (A). Since they are adjacent, their rank functions must differ by exactly 1; that
is, |h(z0) − h(z1)| = 1. We denote A = A0 ↗i A1 in the case h(z1) = h(z0) + 1 and
A = A0 ↘i A1 otherwise. See Figure 6 for an example.
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Figure 6: The color 3 decomposes a ranked chromotopology A (with chro-
motopology I3c ) as A0 ↗3 A1 (we have ↗ because 000 > 001 in A), each
with chromotopology I2c .

Proposition 4.9. Let A = A0 qi A1, where A is an (n, k)-chromotopology. Then A0 and
A1 are (n− 1, k) chromotopologies, isomorphic as graphs.

Proof. The image of qi on V (A0 is exactly V (A1) and qi is an involution, so we have a bijec-
tion between the vertices. If qj(v1) = v2 in A0, the 4-cycle condition on (v1, qi(v1), qi(v2), v2)
gives that (qi(v1), qi(v2)) is also an edge of color j in A1, so the bijection between the ver-
tices extends to a bijection between A0 and A1 as edge-colored graphs, and thus chromo-
topologies. Each of these chromotopologies has 2n−1 vertices and is (n− 1)-regular, so by
Proposition 4.1 they must be (n− 1, k)- chromotopologies.

5 Dashing

Given an adinkraizable chromotopology A, define o(A) to be the set of odd dashings of A.

Question 5.1. What are the enumerative and algebraic properties of o(A)?

We introduce the concept of even dashings and relate them to odd dashings, showing
that not only do the even dashings form a more convenient model for calculations, there is a
bijection between the two types of dashings. We will then count the number of (odd or even)
dashings of Inc via a cute application of linear algebra and generalize to all chromotopologies
with a homological algebra computation.

Finally, we remark that studying dashed chromotopologies is basically equivalent to
studying Clifford algebras. We discuss this further in Section 7.3.

5.1 Odd and Even Dashings

Given an adinkraizable chromotopology A, even Inc , it is not intuitive if an odd dashing
exists. It is somewhat surprising that one always does, given Proposition 4.1. Let an even
dashing be a way to dash E(A) such that every 2-colored 4-cycle contains an even number
of dashed edges, and let e(A) be the set of even dashings. We have the following nice fact:
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Lemma 5.2. For any adinkraizable chromotopology A, we have |o(A)| = |e(A)|.

Proof. Let l = |E(A)|. We may consider a dashing of A as a vector in Zl
2, where each

coordinate corresponds to an edge and is assigned 1 for a dashed edge and 0 for a solid
edge. There’s an obvious way to add two dashings (i.e. addition in Zl

2) and there is a zero
vector d0 (all edges solid), so the family of all dashings (with no restrictions) form a vector
space Vfree(n) of dimension l.

Now, the crucial observation is that e(A) has the structure of a subspace of Vfree(n).
To see this, we can directly check that adding two even dashings preserve the even parity
of each 2-colored 4-cycle and that d0 is an even dashing. Alternatively, we can note the
restriction of a dashing d having a particular cycle with an even number of dashes just means
the inner product of d and some vector with four 1’s as support is zero, so such dashings
are exactly the intersection of Vfree(n) and a set of hyperplanes, which is a subspace.

Unlike the even dashings e(A), the odd dashings o(A) do not form a vector space; in
particular, they do not include d0. However, adding an even dashing to an odd dashing gives
an odd dashing and the difference between any two odd dashings gives an even dashing.
Thus, o(A) is a coset in Vfree(n) of e(A) and must then have the same cardinality as e(A)
given that at least one odd dashing exists. Since A is adinkraizable by definition, we are
done.

The proof of Lemma 5.2 shows that the odd dashings form a torsor for the even dashings,
which are easier to work with.

5.2 Decompositions and Dashing Inc

We start by looking at the n-cubical chromotopology Inc . The main simplification here is
that dashings behave extremely well under decompositions.

Lemma 5.3. If A has l edges colored i and Inc = A0 q1 A1, then each even (resp. odd)
dashing of the induced graph of A0 and each of the 2l choices of dashing the i-colored edges
extends to exactly one even (resp. odd) dashing of A.

Proof. Without loss of generality, we can take i = 1, so A0 contains equivalence classes of
bitstrings with first bit 0 and A1 contains those with first bit 1.

After an even dashing of A0 and an arbitrary dashing of the i-colored edges, note the
remaining 2-colored 4-cycles are of exactly two types:

1. the 4-cycles in A1;

2. the 4-cycles of the form (u, v, w, x), where (u, v) is in A0, (w, x) is in A1, and (v, w)
and (x, u) are colored i.

Note that in all the cycles (u, v, w, x) of the second type, (w, x) is the only one we have
not selected. Thus, there is exactly one choice for each of those edges to satisfy the even
parity condition. Since there is exactly one such cycle for every edge in A1, this selects a
dashing for all the remaining edges, and the only thing we have to check is that the 4-cycles
of the first type, the ones entirely in A1, are evenly dashed.
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Now, a 4-cycle of this type is of form (1a1, 1a2, 1a3, 1a4), which is a face of a hypercube
with vertices (0a1, 0a2, 0a3, 0a4, 1a1, 1a2, 1a3, 1a4). There are 5 other 4-cycles in this hyper-
cube which have all been evenly dashed (the 0ai vertices form a cycle in A0 and the other
4 cycles are evenly dashed by our previous paragraph). Thus, we have that:

d(0a1, 0a2) + d(0a2, 0a3) + d(0a3, 0a4) + d(0a4, 0a1) = 0;

d(0a1, 0a2) + d(0a2, 1a2) + d(1a2, 1a1) + d(1a1, 0a1) = 0;

d(0a2, 0a3) + d(0a3, 1a3) + d(1a3, 1a2) + d(1a2, 0a2) = 0;

d(0a3, 0a4) + d(0a4, 1a4) + d(1a4, 1a3) + d(1a3, 0a3) = 0;

d(0a4, 0a1) + d(0a1, 1a1) + d(1a1, 1a4) + d(1a4, 0a4) = 0.

Adding these equations in Z2 gives:

d(1a1, 1a2) + d(1a2, 1a3) + d(1a3, 1a4) + d(1a4, 1a1) = 0.

Thus, we have constructed an even dashing. The analogous result for odd dashings follow
by the same logic if we replace 0’s on the right sides of the above equations by 1’s.

Proposition 5.4. The number of even (or odd) dashings of Inc is

|e(Inc )| = |o(Inc )| = 22
n−1.

Proof. A convenient property of hypercubes is that every 4-cycle is a 2-colored 4-cycle.
Thus, we get to just say “4-cycles” instead of “2-colored 4-cycles” in this proof.

We prove our result by induction. The base case is easy: for n = 1 (a single edge),
there are exactly 2 even dashings, since there is no 4-cycle. Suppose our result were true
for every k < n. We will now show it is also true for n. Recall from Corollary 4.8 that
every color decomposes Inc . Let Inc = A0 q1 A

1, where both Ai have the topology of In−1c .
Since we have 2n−1 edges with color 1, by Lemma 5.3 we get the recurrence

|e(Inc )| = 22
n−1 |e(In−1c )|.

With the initial case |e(I1c )| = 2, we get |e(Inc )| = 22
n−1+2n−2+···+1 = 22

n−1, as desired. The
result for |o(Inc )| is immediate by Lemma 5.2.

Note that |o(Inc )| = 22
n
/2. This suggests that, besides a single factor of 2, each of the 2n

vertices gives exactly one “degree of freedom” for odd dashings. We will justify this hunch
in the following discussion, in particular with Proposition 5.5.

5.3 Vertex Switching

In [7], Douglas, Gates, and Wang examined dashings from a point of view inspired by
Seidel’s two-graphs ([20]). Define the vertex switch at a vertex v of a dashed chromotopology
A as the operation that produces the same A, except with all edges adjacent to v flipped in
parity (sending dashed edges to solid edges, and vice-versa). It is routine to verify that a
vertex switch preserves odd dashings (in fact, parity in all 4-cycles), so the odd dashings of
A can be split into orbits under all possible vertex switchings, which we will call the labeled
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Figure 7: Before and after a vertex switch at the outlined vertex.

switching classes (or LSCs) of A. We emphasize the adjective “labeled” because the term
switching class in [7] refers to equivalence classes not only under vertex switchings, but also
under different types of vertex permutations.

In the representation theory interpretation of adinkras (see Section 3), a vertex switch
corresponds to adding a negative sign in front of a component field, which gives an iso-
morphic7 representation. Thus, it is natural to think about equivalence classes under these
transformations. Furthermore, studying vertex switchings will also enable us to better un-
derstand the enumeration of dashings (beyond those of Inc , which we now understand very
well). The following computation will not only be useful to study switchings, but will also
justify our hunch about the “degrees of freedom” from Theorem 5.4.

Proposition 5.5. In an adinkraizable (n, k)-chromotopology A, there are exactly 22
n−k−1

dashings in each LSC.

Proof. Vertex switches commute and each vertex switch is an order-2 operation, so they
form a Z2-vector space, which we may index by subsets of the vertices. Consider a set of
vertex switches that fix a dashing. Then, each edge must have its two vertices both switched
or both non-switched. This decision can only be made consistently over all vertices if all
vertices are switched or all vertices are non-switched. Thus, the 2n−k sets of vertex switches
generate a Z2-vector space of dimension 2n−k − 1. This proves the result.

Corollary 5.6. The cubical chromotopology Inc has exactly one labeled switching class.

Proof. This is immediate from Proposition 5.5 and Theorem 5.4, with the substitution
k = 0. Alternatively, this is also evident from [7, Lemma 4.1].

5.4 A Homological Computation

Finally, we combinine several ideas (even dashings, vertex switchings, and our cell complex
interpretation of chromotopologies) to generalize Theorem 5.4.

7We talk more about isomorphisms in 7.3. In fact, it is precisely because vertex permutations also give
isomorphic representations under this definition that [7] uses coarser equivalence classes than we do here.
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Proposition 5.7. Let A be an adinkraizable (n, k)-chromotopology. Then there are 2k

LSCs in A.

Proof. First, vertex switchings preserve parity of all 4-cycles, so counting orbits of odd
dashings (LSCs) under vertex switchings is equivalent to counting orbits of even dashings.

An even dashing can also be thought of as a formal sum of edges over Z2 (we dash an
edge if the coefficient is 1 and do not otherwise), which is precisely a 1-chain of X(A) over
Z2. Second, the even dashings are defined as dashings where all 2-colored 4-cycles have
sum 0. Since these 4-cycles, as elements of C1, are exactly the boundaries of C2, the even
dashings are exactly the orthogonal complement of Im(d2) inside of C1 by the usual inner
product. Thus, the even dashings have Z2-dimension:

dim((Im(d2)
⊥) = dim(C1)− dim(Im(d2))

= (dim(ker(d1)) + dim(Im(d1)))− dim(Im(d2))

= dim(H1) + dim(Im(d1))

= dim(H1) + dim(C0)− dim(H0).

However, note that dim(C0) − dim(H0) = 2n−k − 1, which is exactly the dimension of
the vector space of the vertex switchings for a particular LSC from Proposition 5.5. Since
the product of the number of LSCs and the number of vertex switchings per LSC is the
total number of even dashings, dividing the number of even dashings by 22

n−k−1 gives that
the dimension of switching classes is precisely dim(H1).

By Proposition 4.6 and basic properties of universal covers and fundamental groups,
π1(X(A)) = L, the quotient group, which in this case is the vector space Zk

2. Also, H1 = Zk
2

since H1 is the abelianization of π1. Thus, we have 2k switching classes.

Propositions 5.7 and 5.5 immediately give:

Theorem 5.8. The number of even (or odd) dashings of an adinkraizable (n, k)-chromotopology
A is

|e(A)| = |o(A)| = 22
n−k+k−1.

6 Ranking

In Section 5, we looked at the set of dashings we can put on a chromotopology to make it
dashed. In this section, we look at the set of rank functions we can put on a chromotopology8

to make it ranked. Fix a chromotopology A. Call the set of all ranked chromotopologies
with the same chromotopology as A the rank family R(A) and the elements of R(A) rankings
of A. Figure 8 shows the rank family of I2.

Question 6.1. What are the enumerative and algebraic properties of R(A)?

After a short survey of the literature (mostly developed in [5]), we give some original
results using the language of posets and lattices in Section 6.3. Finally, with the help of
decomposition, we will computationally enumerate the possible rankings for Inc with n ≤ 5.

8All results in this section hold for bipartite prechromotopologies since the only requirement we have is
bipartiteness. However, we will keep it simple and just talk about chromotopologies.
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Figure 8: The rank family of I2.

6.1 Hanging Gardens

The main structural theorem for rankings is the following theorem. Let D(v, w) be the
graph distance between v and w.

Theorem 6.2 (DFGHIL, [5, Theorem 4.1]). Fix a chromotopology A. Let S ⊂ V (A) and
hS : S → Z satisfy the following properties:

1. hS takes only odd values on bosons and only even values on fermions, or vice-versa.

2. For every distinct s1 and s2 in S, we have D(s1, s2) ≥ |hs(s1)− hs(s2)|.

Then, there exists a unique ranking of A, corresponding to the rank function h, such that
h agrees with hS on S and A’s set of sinks is exactly S. By symmetry, there also exists a
unique ranking of A whose set of sources is exactly S.

In other words, any ranking of A is determined by a set of sinks (or sources) and the
relative ranks of those sinks/sources. We can think of such a choice as the following: pick
some nodes as sinks9 and “pin” them at acceptable relative ranks, and let the other nodes
naturally “hang” down. Thus, Theorem 6.2 is also called the “Hanging Gardens” Theorem.
Figure 9 shows an example.

In particular, note that we can pick the set of sinks to contain only a single element,
which defines a unique ranking. Thus, for any vertex v of a chromotopology A, by Theo-
rem 6.2 we can get a ranking Av defined by its only having one sink v (visually, Av “hangs”
from its only sink v). We call Av the v-hooked ranking and all such rankings one-hooked.
By symmetry, we can also define the v-anchored ranking Av, which “floats” from its only
source v. For example, Figure 1 is both the 111-hooked ranking A111 and the 000-anchored
ranking A000 of I3.

Now, we introduce two operators on R(A). Given a ranking B in R(A) (with rank
function h) and a sink s, we define Ds, the vertex lowering on s, to be the operation

9If we chose sources instead of sinks, we can imagine the other nodes “floating” up; the name “Floating
Gardens” also evokes a pleasant image.
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Figure 9: Left: I3. Right: Hanging Gardens on I3 applied to the two outlined vertices.

that sends B to the ranking with rank function h′ where everything is unchanged except
h′(s) = h(s) − 2 (visually, we have “flipped” s down two ranks and its edges with it).
Observe that since s was a sink, this operation retains the fact that all covering relations
have rank difference 1 and thus we still get a ranking. We define Us, the vertex raising
on s, to be the analogous operation for s a source. We call both of these operators vertex
flipping operators.

Proposition 6.3 (DFGHIL, [5, Theorem 5.1, Corollary 5.2]). Let A be a ranking. For any
vertex v:

1. there is a sequence of vertex lowerings that take A to Av;

2. there is a sequence of vertex raisings that take Av to A;

3. there is a sequence of vertex raisings that take A to Av;

4. there is a sequence of vertex lowerings that take Av to A.

Furthermore, in all of these sequences we do not need to ever raise or lower v.

Proof. The main idea of the proof is again very visually intuitive: “pin” v to a fixed rank
and let everything else fall down by gravity (slightly more formal: greedily make arbitrary
vertex lowerings, except on v, until it is no longer possible). The other claims follow by
reversing the steps and/or applying symmetry between sinks and sources.

Corollary 6.4. Any two rankings with the same chromotopology A can be obtained from
each other via a sequence of vertex-raising or vertex-lowering operations.

Corollary 6.4 shows that there exists a connected graph G with V (G) = R(A) and E(G)
corresponding to vertex flips. In the literature (say [5]), R(A), equipped with this graph
structure, is called the main sequence.
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6.2 The Rank Family Poset

Consider a chromotopology A. We know from the discussion in the previous section that
its rank family has the structure of a graph. In this section, we show that it actually has
much more structure. Our main goal will be to explicitly prove some observations made in
[5, Section 8].

Figure 10: The rank family poset for Pv(I
2), where next to each node is a

corresponding ranking. The rankings are presented as miniature posets, with
the black dots corresponding to v, the vertex we are not allowed to raise.

Theorem 6.5. For a chromotopology A and any vertex v of A, there exists a poset Pv(A)
such that:

1. R(A) is the vertex set of Pv(A);

2. Pv(A) is a symmetric ranked poset, with exactly one element in the top rank and
exactly one element in the bottom rank;

3. each covering relation in Pv(A) corresponds to vertex-flipping on some vertex w 6= v.

Proof. Construct Pv(A), as a ranked poset, in the following way: on the bottom rank 0 put
Av as the unique element. Once we finish constructing rank i, from any element B on rank
i, perform a vertex-raising on all sources (except v) to obtain a set of rankings S(B). Put
the union of all S(B) (as B ranges through the elements on rank i) on rank i+ 1, adding
covering relations C > B if we obtained C from B via a vertex-raising. It is obvious from
this construction that the covering relations in Pv(A) are exactly the vertex flippings on
vertices that are not v.

We stop this process if all the elements of rank i have no sources besides v to raise. By
Theorem 6.2, this is only possible for a single ranking, namely Av. Thus, there is exactly
one element in the top rank of Pv(A) as well. By Proposition 6.3, we can get from Av to
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any element of R(A) by vertex-raising only, without ever raising v. This means that every
element of R(A) has appeared exactly once in our construction.

Now, consider the map φ that takes a ranking B of rank k to the ranking B′, in which
each any v with rank i in B has rank k − i in B′. Since φ takes Av to Av, and vice versa,
the top and bottom ranks are symmetric. However, φ also switches covering relations of
vertex-raisings to vertex-lowerings. Thus, we can show that for every i the i-th ranks and
the (k − i)-th ranks are symmetric by induction on i. This makes Pv(A) into a symmetric
poset as desired.

Note that the vertex-flips Ds and Us can be extended linearly to act on formal sums of
R[R(A)], if we let them send rankings for which the corresponding flip is not allowed to 0.
Define U(A) to be the algebra generated by all Us with s ∈ A.

Corollary 6.6. The image of Av under the action of the quotient U(A)/Uv is R[R(A)].

Proof. This is immediate from the construction in Theorem 6.5, where we started with a
single ranking Av. Taking the image under vertex raisings is exactly taking the image of
the U(A)-action on Av. Forbidding the vertex raising at v is exactly restricting this action
to the quotient U(A)/Uv.
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Figure 11: Left: if we were to allow vertex raising at v, we no longer get a
poset since we introduce cycles. Right: we can also think of this situation
by an infinite poset leading upwards.
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The authors of [5] noted that the rank family is reminiscent of a Verma module. Corol-
lary 6.6 is an algebraic realization of this observation. The ranking Av takes the role of the
lowest-weight vector. If we allowed vertex raisings at v, we would have obtained an infinite
repeating family of rankings, as in Figure 11. When we strip the redundant rankings by
forbidding Uv, we leave ourselves with a finite R(A).

6.3 Revisiting the Hanging Gardens

In this section, we will put even more structure on Pv(A) with the language of lattices. A
quick overview of the concepts we will need are in Appendix B.

We first construct an auxiliary poset Ev(A), which we call the v-elevation poset of A:

• let the vertices of Ev(A) be ordered pairs (w, h), where w ∈ A, w 6= v, and h ∈
{1, 2, . . . , D(w, v)}.

• whenever D(w1, w2) = 1 and D(w1, v) + 1 = D(w2, v), have (w1, h) cover (w2, h) and
(w2, h+ 1) cover (w1, h).

Figure 12: The elevation poset E000(I
3
c ). Nodes (w, h) on each vertical line have the same

w-value. In order (left to right), the w-values are: 100, 010, 001, 110, 101, 011, 111.

Our main result of this section is the following theorem.

Theorem 6.7. The v-elevation poset and the v-rank family poset are related by

Pv(A) = J(Ev(A)).

Thus, the rank family poset Pv(A) is a finite distributive lattice.

Proof. We show that there is a bijection between order ideals of Ev(A) and elements of
Pv(A). The second claim in the theorem follows immediately from Theorem B.1.
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Each ideal I of Ev(A) gives exactly one ranking in Pv(A), as follows: for every vertex
w ∈ A, take the maximum h ∈ Z such that (w, h) ∈ I, taking h = 0 if no (w, h) appears
in I. Now assign to w the rank 2h−D(w, v). In other words, h indexes the elevation of w
by counting the number of total times we flip w up from the initial state of the v-hooked
ranking (which corresponds to the empty ideal), justifying the name elevation poset. It
remains to check that this map is a bijection.

Take a ranking A′ in Pv(A). For any w ∈ A′, we have h(w) = 2h − D(w, v) for some
0 ≤ h ≤ D(w, v). Define I ⊂ V (Ev(A)) to contain all (w, h′), possibly empty, with h′ ≤ h.
The property of A′ being a ranking is equivalent to the condition that for every pair of
neighbors w1 and w2 with D(v, w2) = D(v, w1)+1, we have |h(w1)−h(w2)| = 1. However,
this in turn is equivalent to the condition that the maximal h1 and h2 such that (w1, h1)
and (w2, h2) appear (as before, define one of them to be 0 if no corresponding vertices exist
in I) in I satisfy either h1 = h2 or h1 = h2 + 1, which is exactly the requirement for I to
be an order ideal. Thus, our bijection is complete.

The proof of Theorem 6.7 gives another interpretation of Theorem 6.2. Consider the
order ideals of Ev(A). Each such order ideal corresponds to an antichain of maximal
elements, which is some collection of (wi, h(wi)). It can be easily checked that in the
corresponding element of Pv(A), the wi are exactly the sinks, placed at rank 2hi−D(wi, v).

Even though Theorem 6.7 gives us more structure on the rank family, it is very difficult
in general to count the order ideals of an arbitrary poset. The typical cautionary tale is the
case of the (extremely well-understood) Boolean algebra Bn, where the problem of counting
the order ideals, known as Dedekind’s Problem, has resisted a closed-form solution to this
day, with answers computed up to only n = 8 (see [23]).

6.4 Ranking the Cubical Chromotopology

Counting the cardinality of R(Inc ) for general n seems difficult. Instead, we’ll attempt an
algorithmic attack with the help of decomposition.

For any A ∈ R(Inc ), recall from Section 4.4 that the color n must decompose A uniquely
into A0 ↗n A1 or A0 ↘n A1, where each of A0 and A1 is a ranking in R(In−1c ). Thus, we
can iterate over potential pairs of rankings (A0, A1) and see if each of them could have come
from some A. It suffices to check that each pair of vertices inc(c, 0→ n) and inc(c, 1→ n),
where c ∈ Zn−1

2 , has rank functions differing by exactly 1. However, this requires 2n−1

comparisons for each pair of ranking in R(In−1). The following lemma cuts down the
number of comparisons.

Lemma 6.8. For an (n, k)-ranking A and (n − 1, k)-rankings A0 and A1, we have A =
A0 ↗n A1 if and only if the colors and vertex labelings of the three rankings are consistent
and the following condition is satisfied: for each c ∈ Zn−1

2 and the pair of corresponding
vertices s0 = inc(c, 0 → n) and s1 = inc(c, 1 → n) such that at least one of s0 or s1 is a
sink (in A0 or A1, respectively), we have |h(s0)− h(s1)| = 1.

Proof. These are clearly both necessary conditions. It obviously suffices if the adjacency
condition |h(s0)−h(s1)| = 1 were checked over all c for all pairs s0 and s1 in A corresponding
to the same c. It remains to show that checking the situations where at least one si is a
sink (in their respective Ai) is enough.
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Suppose we had a situation where checking just these pairs were not enough. This means
for all pairs of vertices corresponding to the same c (where at least one vertex is a sink in its
respective Ai) we meet the adjacency condition, but for some such pair where neither are
sinks, we have |h(s0)−h(s1)| 6= 1. Let (s(0)0 = s0, s

(0)
1 = s1) be such a pair. Without loss of

generality, assume h(s0) > h(s1). Since s0 is not a sink in A0, there is some s(1)0 covering
s
(0)
0 by an edge with some color i 6= n. Similarly, let s1 = s

(0)
1 be connected to s(1)1 via

color i. Continuing this process, we eventually must come to a pair of vertices s(l)0 and s(l)1
where at least one is a sink. However, h(s(l)0 ) = h(s0) + l > h(s

(l)
1 ). Since we assumed that

h(s0) > h(s1) and |h(s(l)0 )− h(s(l)1 )| = 1, the only way for these equations to be possible is
if for each i < l, we had h(s(i+1)

1 ) = h(s
(i)
1 ) + 1. But this meant |h(s(0)0 ) − h(s(0)1 )| = 1 in

the first place, a contradiction. Thus, these situations do not exist, and it suffices to only
check pairs where at least one vertex is a sink.

Lemma 6.8 makes the following algorithm possible:

1. For the data structure, represent all rankings A by a set of sinks S(A) and their
ranks as in Theorem 6.2.

2. Start with R(I1c ), which is a set of 2 rankings.

3. Given a set rankings in R(In−1c ), iterate over all pairs of (possibly identical)
rankings (A,B) in R(In−1c )×R(In−1c ). For each pair,

(a) Consider the ranking B′ which is identical to B except with the rank function
hB′(
−→
0 ) = hB(

−→
0 ) + 1.

(b) For each sink s ∈ S(A) ∪ S(B′), check that |hA(s)− hB′(s)| = 1.

(c) If the above is satisfied for all s, put A↗n B
′ in R(Inc ).

We used the above algorithm to compute the results for n ≤ 5, which we include in
Table 1 along with the counts of dashings (recall this is o(n) = 22

n−1) and adinkras (which
we obtain by multiplying |R(Inc )| and o(n) as the dashings and rankings are independent).
Finding the answer for n = 6 seems intractible with an algorithm that is at least linear in
the number of solutions. For chromotopologies other than R(Inc ) that can be decomposed,
Lemma 6.8 still allows us to perform some similar computations. However, doing a case-
by-case analysis for different chromotopologies seems uninteresting without unifying rules.

7 Back to Physics

So far, we mostly discussed pure combinatorics in our discussions about chromotopologies,
dashings, and rankings. We now revisit the original physics context. We survey the recent
papers but also examine some of the foundational questions. In particular, we suggest
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n dashings rankings adinkras
1 2 2 4
2 8 6 48
3 128 38 4864
4 32768 990 32440320
5 2147483648 395094 848457904422912

Table 1: Enumeration of dashings, rankings, and adinkras with chromotopology Inc .

a definition of isomorphism for adinkraic representations, a notion that has not yet been
rigorously treated in the literature.

7.1 Constructing Representations

Take an adinkra A, and consider the component fields (the bosons φ and the fermions
ψ) as a basis. Then, consider a set of matrix generators {ρ(Qi)} in that basis, where
ρ(Qi) is the adjacency matrix of the subgraph of A induced by the edges of color i. If we
order all the φ to come before all the ψ in the row/column orderings, these matrices are
block-antisymmetric of the form

ρ(Qi) =

(
0 Li

Ri 0

)
,

where the Li and Ri are [12]’s garden matrices. For the adinkra in Figure 13, we have the
following matrices, where the row/column indices are in the order 00, 11, 10, 01.

ρ(Q1) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ρ(Q2) =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



00

1001

11

Figure 13: An adinkra with chromotopology I2.

So far, we have encoded the graph and the dashing into the matrices, but we do not
yet have a representation of the supersymmetry algebra po1|N . In fact, the ρ(Qi) form
a representation of the Clifford algebra Cl(N), which we discuss further in Section 7.3.
The missing information (up to scalars) is the ranks of the vertices, which we can add
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into these matrices by adding the Hamiltonian operator H’s to appropriate entries (recall
Section 3 for details). In this sense, we are partitioning the infinite-dimensional basis of
the representation into finite-dimensional “slices,” each slice corresponding to a single finite-
dimensional representation corresponding to our finite-dimensional matrices.

An obvious question to consider whenever we study representations is the following:

Question 7.1. Which adinkratic representations are irreducible?

In the valise case, this is well-understood (see [6]) with a surprising answer. If L were not
a maximal subspace inside Zn

2 , we may quotient Inc /L further to give a subrepresentation.
Thus, irreducible valise adinkratic representations must have maximal doubly-even codes,
which are self-orthogonal. There seems to be no good general method for other rankings.
The intuition of the obstruction is that this method of creating subrepresentations require
the vertices in each coset to come from the same rank, corresponding to the same engineering
dimension. This kind of physics constraint is intricately connected to the selection of the
right notion of isomorphism for adinkratic representations, which we now discuss.

7.2 When are Two Adinkras Isomorphic?

A natural problem in considering representations is to selecting the right definition of iso-
morphism. The instinct for this choice seems to be completely intuitive for the authors of
the literature (see [12] and [7]), but this may be the first formal discussion.

Question 7.2. What is the right definition of “isomorphism” for two adinkraic representa-
tions? How does it relate to the combinatorics of adinkras?

We usually consider two representations isomorphic if they are conjugate by some change
of basis. However, because of our physics context we need more restrictions. To find the
right notion, we now recall/define three types of transformations and discuss what it means
for them to give the “same” adinkra.

• Recall that a vertex switching changes the dashing of all edges adjacent to a vertex.
This corresponds to simply changing the sign (as a function) of the component field
corresponding to that vertex, or equivalently, conjugation of the representation by a
diagonal matrix of all 1’s except for a single (−1). It is reasonable to consider this
move as an operation that preserves isomorphism.

• Let a color permutation permute the names of the colors (in the language of codes, it is
a simultaneous column permutation of the bitstrings corresponding to each vertex). In
our situation, this is just a shuffling of the generators, so at first glance it is reasonable
to consider this operation to preserve isomorphism. The existing literature, e.g. [6],
seems to do so as well. However, this is not quite what we want in a natural definition,
where we need to consider the base ring fixed. By analogy, consider the k[x, y]-modules
k[x, y]/(x) and k[x, y]/(y), which may look “equivalent” (they are indeed isomorphic
as algebras) but are not isomorphic as modules. They should not be: we really want
A ⊕ B to be isomorphic to A ⊕ B′ if B and B′ were isomorphic, but the direct
sums k[x, y]/(x)⊕ k[x, y]/(x) and k[x, y]/(x)⊕ k[x, y]/(y) are not isomorphic in any
reasonable way.
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In fact, the existing adinkra literature notices this problem when considering discon-
nected adinkras (i.e. adinkras with topology of a disconnected graph). These graphs
correspond to direct sums of representations of single adinkras. However, since a
color permutation is done over all disjoint parts simultaneously, if we consider color
permutations as operations that preserve isomorphism, we obtain situations where
A ∼= C and B ∼= D, but A⊕ B 6∼= C ⊕D. The literature deals with this situation by
calling color permutations outer isomorphisms. We believe the correct thing to do is
to just to not consider these situations isomorphic and treat them as a separate kind
of similarity.

• Let a vertex permutation permute the vertex labels of an adinkra A. This corresponds
to conjugating the matrices ρ(Qi) by permutation matrices. Here it makes sense
to impose further physics constraints: we want these transformations to preserve
the engineering dimensions of the component fields. This prevents us from allowing
arbitrary vertex permutations and simply considering two adinkraic representations
isomorphic if they’re conjugate. On the adinkras side, this corresponds to us enforcing
that the rank function of A be preserved under any vertex permutation (in particular,
bosons must go to bosons, and fermions to fermions). Happily, this neatly corresponds
to the natural definition of isomorphism for ranked posets.

When we have a combinatorial representation of a physics situation, there are two ways
our brains naturally want to define isomorphism, one using the physics intuition (which
is the “right” one but harder to see), and one using the combinatorial intuition (which is
“wrong” but easier to see).

• Following physics requirements, we define two adinkras A and B to be isomorphic if
there is some matrix R that transforms each generator ρ(QI) of A to the corresponding
ρ(QI) in B via conjugation, with the stipulation that such a conjugation preserves the
ranks of the component fields. To be explicit, let the component fields be partitioned
into P1 ∪ P2 ∪ · · · , where each Pi contains all ψj or φj of some rank (equivalently,
engineering dimension). We require M to be block-diagonal with respect to this
partition.

• Following combinatorial intuition, we define two adinkras to be C-isomorphic if there
is a sequence from one to the other via only vertex switchings or ranked poset iso-
morphisms. Note that from our earlier discussion, both of these operations preserve
isomorphism, so C-isomorphism is more restrictive than isomorphism10.

In a perfect world these two notions would exactly match. We’re not so lucky here: the
adinkra topology is an invariant of the operations in the definition of C-isomorphism, but
there are adinkras with different topologies that correspond to isomorphic representations;
see [6, Examples 4.2, 4.5]. We still do not have a complete picture of the nuances between
the two definitions.

10In turn, our isomorphism is more restrictive than a physics constraint put forth in [12], which can be
restated as the requirement that M must be block-diagonal on Φ∪Ψ, the partition into bosons and fermions
(this is coarser than the partition into the Pi).
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C-isomorphism is studied in more detail in [7] (where it is simply called “isomorphism”),
which gives a deterministic algorithm to tell if two adinkras are C-isomorphic. Similar
discussion relevant to isomorphism (even though it was not defined as such) can be found
in [12] and [6]. We believe a lot of interesting mathematics remain in the area. As a
potential example, both [12] and [7] distinguish adinkras with the help of what amounts to
the trace of the matrix

ρ(Q1)ρ(Q2) · · · ρ(QN )

after multiplying by the matrix
(
I 0
0 −I

)
. We would like to point out that this is precisely

the well-known supertrace from the theory of superalgebras.
Finally, we can rephrase our notion of isomorphism with the language of quivers. Our

isomorphism classes are exactly isomorphism classes of quiver representations with each
node corresponding to one of the partitions Pi. For example, a valise representation (which
corresponds to a 2-partition) for I2c cam be identified with the quiver from Figure 14, where
the 2 nodes correspond to the bipartition B∪F of bosons and fermions. Each pair of edges
of a color, say i, corresponds to the off-diagonal block matrices M and M ′ that arise when

we write each Qi as
(

0 M
M ′ 0

)
corresponding to the bipartition. In general, if B is further

partitioned into m1 parts and F into m2 parts, we would obtain (m1+m2) vertices in total
and 2m1m2 edges of each color.

B F

Figure 14: The quiver corresponding to a valise adinkra for I2c .

7.3 Clifford Representations

In Section 3, we called the adinkraic representations arising from valise adinkras “Clifford
supermultiplets.” This is no big surprise – when we ignore the Hamiltonian H in the
defining relations

{QI , QJ} = 2δIJH,

we get precisely the Clifford algebra relations

{QI , QJ} = 2δIJ .

In other words, when we forget about the rank of an adinkra and look at only the dashed
chromotopology (alternatively, the valise, where no bosons or fermions are privileged by
rank from the other fields of the same type), we are really looking at a Clifford algebra
representation, something that we saw in 7.1 and in the proof of Theorem 4.5. Therefore,
we can think of adinkraic representations as extensions of representations of the Clifford
algebra, a well-known subject (see [1] or [17]). [3] makes this analogy more rigorous by
realizing these representations as filtered Clifford supermodules.

While Clifford algebras are well-understood, the following is a natural question to ask:
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Question 7.3. Can adinkras give us better intuition (organizational or computational)
about the theory of Clifford representations?

In [6], each valise adinkra with the Inc chromotopology is used to explicitly construct
a representation of the Clifford algebra Cl(n). This introduces a plethora of representa-
tions with lots of isomorphisms between them – after all, there are at most 2 irreducible
representations for each Clifford algebra over R.

7.4 Extensions

As we brushed over in Section 3, the adinkraic representations correspond to the 1-dimensional
(more precisely, (1, 0)-dimensional) worldline situation with N supercharge generators. We
talk about the more general context in this section. Helpful expositions of related concepts
are [11] and [22].

In general, we are interested in some (1 + q)-dimensional vector space over R with
Lorentzian signature (1, q). Besides our (1, 0) situation, some examples are (1, 1) (world-
sheet) and (1, 3) (Lorentzian spacetime). We can write this more general situation as
(1, q|N)-supersymmetry11 We would then call the corresponding superalgebra po1+q|N ,
which specializes to the particular superalgebra po1|N we have been working with when
q = 0.

In the case where (1 + q) = 2, 6 (mod 8), we actually get two different types of super-
charge generators (this again corresponds to the fact that there are two Clifford algebra
representations over R in those situations), so we can partition N = P +Q and call these
situations (1, q|P,Q)-supersymmetry.

Question 7.4. What happens when we look at q > 0? What kind of combinatorial objects
appear? Will the machinery we developed for adinkraic representations in the wordline case
be useful?

[13] examines the (1, 1)-case, where the combinatorics get more complex. The reader
may have gotten the intuition that the dashings and rankings are fairly independent condi-
tions of the adinkra. This is true for the (1, 0)-case but no longer holds for the (1, 1)-case,
where certain forbidden patterns arise that depend both on the dashings and rankings. [15]
creates (1, 1|P,Q) representations by tensoring and quotienting worldline representations,
similar in spirit to the construction of representations of semisimple Lie algebras.

In a different direction, [9] and [10] examine which worldline representations can be
“shadows” of higher-dimensional ones and give related consistency-tests and algorithms.
As worldline representations are involved, the 1-dimensional theory already built plays an
instrumental role.

11Here is another unfortunate source of language confusion: for physicists, N means the number of
supersymmetry generators, whereas mathematicians would instead count the total number of dimensions
and write dN instead of N , where d is the real dimension of the minimal spin-(1/2) representation of R1+q.
These minimal dimensions are 1, 1, 2, 4, 8, . . . starting with n = 1. Luckily, for most of this paper, d = 1
and we have no problems. A clear explanation is given in [11].
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A Clifford Algebras

The Clifford algebra is an algebraCl(n) with generators γ1, . . . , γn and the anticommutation
relations

{γi, γj} = 2δi,j · 1.

The Clifford algebra can be defined for any field, but we will typically assume R. There
are also more general definitions than what we give, though we won’t need them for our
paper. For references, see [1] or [2].

We can associate an element of the Clifford algebra to any n-bitstring b = b1b2 · · · bn,
by defining

clif(b) =
∏
i

γbii ,

where the product is taken in increasing order of i. Call these elements monomials. The 2n

possible monomials form a basis of Cl(n) as a vector space, and the 2n+1 signed monomials
± clif(b) form a multiplicative group SMon(n), or just SMon when the context is clear. It
is easy to see that two signed monomials of degrees a and b commute if and only if ab = 0
(mod 2), and one could equivalently define Clifford algebras as commutative superalgebras
with odd and even parts generated by the odd and even degree monomials, respectively.

The following facts are needed for Proposition 4.1:

Lemma A.1. The image of a code L under clif is commutative if and only if for all a, b ∈ L,

(a · b) + wt(a) wt(b) = 0 (mod 2).

Proof. Finally, consider clif(a) = γa1 . . . γar and clif(b) = γb1 . . . γbs , where r = wt(a) and
s = wt(b). Note we can get from clif(a) clif(b) to clif(b) clif(a) in wt(a) wt(b) transpositions,
where we move, in order γb1 , · · · , γbs through clif(a) to the left, picking up exactly wt(a)
powers of (−1). However, we’ve also overcounted once for each time a and b shared a
generator γi, since γi commutes with itself. Therefore, we have exactly (a · b)+wt(a) wt(b)
powers of (−1). The condition for commutativity is then that this quantity be even for all
pairs a and b, which is equivalent to the second defining condition for dashing codes.

Proposition A.2. A code L is a dashing code if and only if L has the property that for a
suitable sign function s(v) ∈ {±1} with s(−→0 ) = 1, the set SMonL = {s(v) clif(v) | v ∈ L}
form a subgroup of SMon.

Proof. Without loss of generality, say clif(v) = s(v)
∏k

i=1 γi. Then

clif(v)2 = (γ1γ2 · · · γk)(γ1γ2 · · · qk)
= (−1)(k−1)(γ2γ3 · · · γk)(γ1)(γ1γ2 · · · γk)
= (−1)k(k−1)/2.

Suppose s exists. Then, we must not have (−1) ∈ SMonL (since we already have 1 ∈
SMonL. Therefore, it is necessary to have the last quantity equal 1, which happens exactly
when wt(v) = 0 or 1 (mod 4) for all v ∈ L. Now, since clif(a) clif(b) and clif(b) clif(a) are
equal up to sign, we must have them commute for all a and b. By Lemma A.1 this is the
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remainder of the requirement of L being a dashing code. Thus, it is necessary for L to be
a dashing code for s to exist.

If L were a dashing code, then pick a basis l1, . . . , lk of L and assign s(li) = 1 for all
i. Note by the above equations clif(li)

2 = 1 for all i. The linear independence of the li is
equivalent to saying that no group axioms are broken by this choice of li. Now, greedily
define

s(
∏
i∈I

clif(li)) =
∏
i∈I

s(
∏

(clif(li)),

which is well-defined and closed under multiplication since the li commute and square to
1.
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B Lattices

For a reference, see [21] or any other standard treatment of posets.
An order ideal of a poset P is a subset of elements S ⊂ P such that if s ∈ S and s > t,

then t ∈ S. There is a bijection between the order ideals of a poset P and the antichains
(sets of pairwise incomparable elements) of P , where each order ideal I is mapped to the
set of maximal elements in I. We define J(P ) to be the poset of order ideals of P , ordered
by inclusion.

The least upper bound x ∨ y of x and y in a poset P is an element z (which must be
unique if it exists) such that z ≥ x and z ≥ y and for all z′ ≥ x and z′ ≥ y, z′ ≥ z. We
can similarly define the greatest lower bound x∧ y when we reverse all the directions in the
previous definition. A poset is a lattice if every pair of elements has a least upper bound
and a greatest lower bound. A lattice is distributive if the following hold:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

It is routine to check that J(P ) is a distributive lattice. Furthermore:

Theorem B.1 (Fundamental Theorem for Finite Distributive Lattices). The map J is a
bijection between finite posets and finite distributive lattices.
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