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ETHER AND THE THEORY OF
RELATIVITY

An Addressdelivered on May 5th, 1920
in the University of Leyden

OW does it come &ou that aongside of the idea of

poncerable matter, which is derived by abstradion from

everyday life, the physicists st the idea of the existence of
another kind o matter, the aher? The explanation is probably to be
souglt in those phenomena which have given rise to the theory of
adion at a distance, and in the properties of light which have led to
the undulatory theory. Let us devote a little while to the
consideration d these two subjeds.

Outside of physics we know nothing d adion at a distance
When we try to conned cause and effed in the experiences which
natural objeds afford us, it seems at first as if there were no aher
mutual actions than those of immediate ontact, eg. the
communicaion d motion by impact, push and pull, heding a
inducing combustion by means of aflame, etc. It is true that even in
everyday experienceweight, which isin a sense adion at a distance,
plays avery important part. But since in daily experience the weight
of bodes meds us as omething constant, something nd linked to
any cause which is variable in time or place we do nd in everyday
life speaulate a6 to the cause of gravity, and therefore do nd become
conscious of its charader as adion at a distance It was Newton's
theory of gravitation that first assgned a cause for gravity by
interpreting it as adion at a distance, procealing from masses.
Newton's theory is probably the gredest stride ever made in the
effort towards the caisal nexus of natural phenomena. And yet this
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6 SIDELIGHTS ON RELATIVITY

theory evoked a lively sense of discomfort among Newton's
contemporaries, becaise it seemed to be in conflict with the
principle springing from the rest of experience that there can be
redprocd adion orly through contad, and nd through immediate
adion at a distance.

It is only with reluctance that man's desire for knowledge
endures a dualism of this kind. How was unity to be preserved in his
comprehension d the forces of nature? Either by trying to look yon
contad forces as being themselves distant forces which admittedly
are observable only at a very small distance—and this was the road
which Newton's foll owers, who were entirely under the spell of his
doctrine, mostly preferred to take; or by asaming that the
Newtonian adion at a distance is only appaently immediate adion
at a distance, but in truth is conveyed by a medium permeding
space whether by movements or by elastic deformation d this
medium. Thus the endeavour toward a unified view of the nature of
forces leads to the hypothesis of an ether. This hypothesis, to be
sure, did na at first bring with it any advance in the theory of
gravitation a in physics generaly, so that it became customary to
tread Newton's law of force & an axiom nat further reducible. But
the @her hypaothesis was boundalways to play some part in physicd
science, evenif at first only alatent part.

When in the first half of the nineteenth century the far-reading
similarity was reveded which subsists between the properties of
light and those of elastic waves in ponderable bodies, the dher
hypothesis found fresh support. It appeaed beyond question that
light must be interpreted as a vibratory processin an elastic, inert
medium filli ng Yo universal space It aso seemed to be anecessary
consequence of the fad that light is cgpable of polarisation that this
medium, the dher, must be of the nature of a solid body, becaise
transverse waves are not possblein afluid, but only in asolid. Thus
the physicists were boundto arrive & the theory of the “quasi-rigid”
luminiferous ether, the parts of which can cary out no movements
relatively to ore another except the small movements of deformation
which correspondto light-waves.
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This theory—aso cdled the theory of the stationary
luminiferous ether—moreover found a strong suppat in an
experiment which is also of fundamental importance in the speaal
theory of relativity, the experiment of Fizeau, from which ore was
obliged to infer that the luminiferous ether does not take part in the
movements of bodes. The phenomenon of aberration also favoured
the theory of the quasi-rigid ether.

The development of the theory of eledricity aong the path
opened wp by Maxwell and Lorentz gave the development of our
ideas concerning the eher quite apeauliar and urexpeaed turn. For
Maxwell himself the eher indeed still had properties which were
purely medianicd, athoudh o a much more complicated kind than
the medhanicd properties of tangble solid bodes. But neither
Maxwell nor his followers siccealed in elaborating a medhanicd
model for the @her which might furnish a satisfadory mechanicd
interpretation d Maxwell’s laws of the dedro-magnetic field. The
laws were dear and simple, the mechanicd interpretations clumsy
and contradictory. Almost imperceptibly the theoretical physicists
adapted themselves to a situation which, from the standpant of their
mechanicad programme, was very depressng. They were particularly
influenced by the dedro-dynamical investigations of Heinrich
Hertz. For whereas they previously had required of a awnclusive
theory that it should content itself with the fundamental concepts
which belong exclusively to mechanics (e.g. densities, velocities,
deformations, streses) they gradualy acaistomed themselves to
admitting eledric and magnetic force a fundamental concepts sde
by side with those of medhanics, withou requiring a medhanicd
interpretation for them. Thus the purely medianicd view of nature
was gradually abandored. But this change led to a fundamental
dualism which in the longrun was insupportable. A way of escgoe
was now souglt in the reverse direction, by reducing the principles
of medhanics to those of eledricity, and this espedally as confidence
in the strict validity of the eguations of Newton's mechanics was
shaken by the experiments with S-rays and rapid kathode rays.

This dualism still confronts us in urextenuated form in the
theory of Hertz, where matter appeas not only as the beaer of
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velocities, kinetic energy, and mechanicd presaures, but also as the
beaer of eledromagnetic fields. Since such fields aso occur in
vacuo—i.e. in free ¢her—the dher also appeas as beaer of
eledromagnetic fields. The dher appeas indistinguishable in its
functions from ordinary matter. Within matter it takes part in the
motion d matter and in empty spaceit has everywhere avelocity; so
that the eher has a definitely assgned velocity throughout the whaole
of space There is no fundamental difference between Hertz's ether
and pondbrable matter (which in part subsistsin the dher).

The Hertz theory suffered na only from the defea of ascribing
to matter and ether, on the one hand medhanicd states, and onthe
other hand eledricd states, which do nat stand in any concevable
relation to ead other; it was also a variance with the result of
Fizeas' s important experiment on the velocity of the propagation of
light in moving fluids, and with ather established experimenta
results.

Such was the state of things when H. A. Lorentz entered upm
the scene. He brough theory into harmony with experience by
means of a wonderful simplificaion of theoreticd principles. He
adhieved this, the most important advancein the theory of eledricity
since Maxwell, by taking from ether its medianicd, and from matter
its eledromagnetic qualities. As in empty space so too in the
interior of material bodes, the ether, and nd matter viewed
atomisticdly, was exclusively the sea of eledromagnetic fields.
According to Lorentz the dementary particles of matter alone are
capable of carying ou movements; their eledromagnetic adivity is
entirely confined to the carying d eledric charges. Thus Lorentz
succealed in reducing all eledromagnetic happenings to Maxwell’s
equations for freespace

As to the medhanicd nature of the Lorentzian ether, it may be
said o it, in a somewhat playful spirit, that immobility is the only
mechanica property of which it has not been deprived by H. A.
Lorentz. It may be added that the whole change in the conception of
the dher which the speaa theory of relativity brough about,
consisted in taking away from the eher its last medhanicd quality,
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namely, its immobility. How this is to be understood will forthwith
be expounded.

The spacetime theory and the kinematics of the speaal theory of
relativity were modelled on the Maxwell-Lorentz theory of the
eledromagnetic field. This theory therefore satisfies the wndtions
of the speaal theory of relativity, but when viewed from the latter it
aqjuires a novel asped. For if K be a system of co-ordinates
relatively to which the Lorentzian ether is at rest, the Maxwell-
Lorentz eguations are valid primarily with referenceto K. But by the
spedal theory of relativity the same ejuations without any change of
meaning also hdd in relation to any new system of co-ordinates K’
which is moving in unform translation relatively to K. Now comes
the aaxious question.—Why must | in the theory distingush the K
system abowve dl K' systems, which are physicadly equivalent to it in
al respeds, by assuming that the dher is at rest relatively to the K
system? For the theoretician such an asymmetry in the theoreticd
structure, with no correspondng asymmetry in the system of
experience is intolerable. If we asume the dher to be & rest
relatively to K, but in motion relatively to K', the physicd
equivalence of K and K' seems to me from the logical standpant,
not indeed dawvnright incorred, but neverthelessinacaeptable.

The next position which it was possble to take up in face of this
state of things appeaed to be the following. The @her does not exist
at al. The dectromagnetic fields are not states of a medium, and are
not bound down to any beaer, but they are independent redities
which are not reducible to anything else, exadly like the gaoms of
poncerable matter. This conception suggests itself the more readily
as, acaording to Lorentz's theory, eledromagnetic radiation, like
poncerable matter, brings impulse and energy with it, and as,
acaording to the speaa theory of reativity, both matter and
radiation are but spedal forms of distributed energy, poncderable
masslosing itsisolation and appeaing as a speaal form of energy.

More caeful refledion teades us, however, that the spedad
theory of relativity does not compel us to deny ether. We may
asume the existence of an ether; only we must give up ascribing a
definite state of motionto it, i.e. we must by abstradion take from it
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the last medhanical charaderistic which Lorentz had still | eft it. We
shall seelater that this point of view, the concavability of which |
shall at once endeavour to make more intelligible by a somewhat
halting comparison, isjustified by the results of the general theory of
relativity.

Think of waves on the surfaceof water. Here we can describe
two entirely different things. Either we may observe how the
unddatory surface forming the boundary between water and air
atersin the aourse of time; or else—with the help of small floats, for
instance—we can olserve how the position of the separate particles
of water aters in the course of time. If the existence of such floats
for tradking the motion d the particles of afluid were afundamental
impossbility in physics—if, in fad, nothing else whatever were
observable than the shape of the space occupied by the water as it
varies in time, we shoud have no gound for the asumption that
water consists of movable particles. But all the same we @uld
charaderise it asamedium.

We have something like this in the dedromagnetic field. For we
may picture the field to ouselves as consisting of lines of force If
we wish to interpret these lines of force to ouselves as mething
material in the ordinary sense, we are tempted to interpret the
dynamic processes as motions of these lines of force such that eat
separate line of forceis tracked throughthe course of time. It iswell
known, however, that this way of regarding the dedromagnetic field
leads to contradictions.

Generalising we must say this—There may be supposed to be
extended physicd objeds to which the idea of motion canna be
applied. They may na be thought of as consisting d particles which
dlow themselves to be separately tradked through time. In
Minkowski’s idiom this is expressed as follows—Not every
extended conformation in the four-dimensional world can be
regarded as compaosed of world-threads. The specia theory of
relativity forbids us to assume the ether to consist of particles
observable through time, but the hypothesis of ether in itself isnat in
conflict with the speaal theory of relativity. Only we must be on ou
guard against ascribing a state of motionto the dher.
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Certainly, from the standpant of the speaal theory of relativity,
the @her hypothesis appeas at first to be an empty hypaothesis. In the
equations of the dedromagnetic field there occur, in addition to the
densities of the dedric dharge, only the intensities of the field. The
caeer of eledromagnetic processes in vacuo appeas to be
completely determined by these equations, uninfluenced by other
physicd quantities. The eledromagnetic fields appea as ultimate,
irreducible redities, and at first it seems superfluous to pcstulate a
homogeneous, isotropic  dher-medium, and to envisage
eledromagnetic fields as gates of this medium.

But on the other hand there is a weighty argument to be adduced
in favour of the ether hypothesis. To deny the dher is ultimately to
asume that empty space has no physicd qualities whatever. The
fundamental fads of medianics do nd harmonize with this view.
For the medhanical behaviour of a wrpored system hovering fredy
In empty space depends not only on relative positions (distances)
and relative velocities, but also on its gdate of rotation, which
physicdly may be taken as a dharacteristic not appertaining to the
system in itself. In order to be ale to look upon the rotation d the
system, at least formaly, as smething red, Newton ohedivises
space Since he dasss his absolute spacetogether with red things,
for him rotation relative to an absolute spaceis aso something red.
Newton might no lesswell have cdled his absolute space*Ether”;
what is esentia is merely that besides observable objeds, ancther
thing, which is not perceptible, must be looked upon as red, to
enable accéeration or rotationto be looked upon as osmething red.

It is true that Mad tried to avoid having to accept as red
something which is nat observable by endeasouring to substitute in
mechanics a mean acceeration with reference to the totality of the
masses in the universe in placeof an accéeration with reference to
absolute space But inertial resistance opposed to relative
acceeration d distant masses presuppcses adion at a distance and
as the modern physicist does not believe that he may accept this
adion at a distance, he cmes badk once more, if he follows Mad,
to the éher, which has to serve a medium for the dfects of inertia.
But this conception d the @her to which we are led by Mad's way
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of thinking dffers esentially from the dher as concaved by
Newton, by Fresnel, and by Lorentz. Mad's ether not only
condtions the behaviour of inert masses, but is also condtioned in
its date by them.

Mad' s ideafindsits full development in the eher of the general
theory of relativity. According to this theory the metrical qualiti es of
the continuum of spacetime differ in the environment of different
points of spacetime, and are partly condtioned by the matter
existing outside of the territory under consideration. This gacetime
variability of the redprocd relations of the standards of space ad
time, or, perhaps, the recogntion o the fad that “empty space inits
physicd relation is neither homogeneous nor isotropic, compelling
us to describe its gate by ten functions (the gravitation potentials
J.), has, | think, finally disposed of the view that spaceis physicdly
empty. But therewith the cnception d the d@her has again acquired
an intelli gible mntent, although this content differs widely from that
of the @her of the mechanicd unddatory theory of light. The eher
of the general theory of relativity is a medium which is itself devoid
of all mecdhanicd and kinematicd qualities, but helps to determine
mechanicd (and eledromagnetic) events.

What is fundamentally new in the éher of the general theory of
relativity as oppased to the d@her of Lorentz consists in this, that the
state of the former is at every placedetermined by connedions with
the matter and the state of the d@her in neighbouring daces, which
are amenable to law in the form of differential equations; whereas
the state of the Lorentzian ether in the dsence of electromagnetic
fields is condtioned by nothing ouside itself, and is everywhere the
same. The dher of the general theory of relativity is transmuted
conceptually into the éher of Lorentz if we substitute constants for
the functions of spacewhich describe the former, disregarding the
causes which condition its gate. Thus we may also say, | think, that
the dher of the general theory of relativity is the outcome of the
L orentzian ether, throughrelativation.

As to the part which the new ether isto play in the physics of the
future we ae not yet clear. We know that it determines the metricd
relations in the spacetime ntinuum, e.g. the nfigurative
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posshiliti es of solid bodes aswell as the gravitational fields; but we
do nd know whether it has an essential share in the structure of the
eledrical elementary particles constituting matter. Nor do we know
whether it is only in the proximity of ponderable masses that its
structure differs esentially from that of the Lorentzian ether;
whether the geometry of spaces of cosmic extent is approximately
Euclidean. But we can assert by reason of the relativistic eguations
of gravitation that there must be a departure from Euclidean
relations, with spaces of cosmic order of magnitude, if there exists a
positive mean density, no matter how small, of the matter in the
universe. In this case the universe must of necessty be spatialy
unbounded and of finite magnitude, its magnitude being determined
by the value of that mean density.

If we @nsider the gravitational field and the dedromagnetic
field from the standpant of the dher hypothesis, we find a
remarkable difference between the two. There can be no spacenor
any part of spacewithou gravitational potentials; for these wnfer
upon space its metricd qualities, withou which it canna be
imagined at al. The eistence of the gravitationa field is
inseparably bourd up with the existence of space On the other hand
a pat of space may very well be imagined withou an
eledromagnetic field; thus in contrast with the gravitationa field,
the dedromagnetic field seems to be only secondarily linked to the
ether, the formal nature of the dedromagnetic field being as yet in
no way determined by that of gravitational ether. From the present
state of theory it looks as if the dedromagnetic field, as opposed to
the gravitational field, rests upon an entirely new formal motif, as
though nature might just as well have endowved the gravitational
ether with fields of quite another type, for example, with fields of a
scdar patential, instead o fields of the dedromagnetic type.

Since acording to ou present conceptions the dementary
particles of matter are also, in their esence nothing else than
condensations of the dedromagnetic field, our present view of the
universe presents two rediti es which are completely separated from
ead aher conceptualy, athough conreded causally, namely,
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gravitational ether and eledromagnetic field, or—as they might also
be cdl ed—spaceand matter.

Of course it would be agrea advance if we auld succeel in
comprehending the gravitational field and the dedromagnetic field
together as one unified conformation. Then for the first time the
epoch of theoreticd physics founded by Faraday and Maxwell
would reat a satisfadory conclusion. The @ntrast between ether
and matter would fade away, and, through the general theory of
relativity, the whale of physics would become a @mplete system of
thought, like geometry, kinematics, and the theory of gravitation. An
excealingly ingenious attempt in this diredion has been made by the
mathematician H. Weyl; but | do nd believe that his theory will had
its ground in relation to redity. Further, in contemplating the
immediate future of theoreticd physics we ought not uncondtionally
to rged the possbhility that the fads comprised in the quantum
theory may set bounds to the field theory beyond which it canna
pass

Recaitulating, we may say that according to the general theory
of relativity spaceis endowed with physicd gqualiti es; in this snse,
therefore, there exists an ether. According to the general theory of
relativity spacewithou ether is unthinkable; for in such spacethere
not only would be no propagation of light, but also no p®shility of
existence for standards of space ad time (measuring-rods and
clocks), nor therefore any spacetime intervals in the physicd sense.
But this ether may not be thought of as endowed with the quality
charaderistic of ponderable media, as consisting of parts which may
be tradked throughtime. The ideaof motion may not be applied to it.
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NE reason why mathematics enjoys gedal esteem, above dl

other sciences, is that its laws are asolutely certain and

indisputable, while those of all other sciences are to some
extent debatable and in constant danger of being overthrown by
newly discovered fads. In spite of this, the investigator in another
department of science would nd neeal to envy the mathematician if
the laws of mathematics referred to oljeds of our mere imagination,
and nd to objeds of redity. For it canna occasion surprise that
different persons shoud arrive & the same logicd conclusions when
they have drealy agread upm the fundamental laws (axioms), as
well as the methods by which aher laws are to be deduced
therefrom. But there is another reason for the high repute of
mathematics, in that it is mathematics which affords the exad
natural sciences a cetain measure of seaurity, to which withou
mathematics they could na attain.

At this paint an enigma presents itself which in all ages has
agitated inquiring minds. How can it be that mathematics, being
after al a product of human though which is independent of
experience, is © admirably appropriate to the objeds of redity? Is
human reason, then, withou experience, merely by taking thought,
able to fathom the properties of red things.

In my opinion the answer to this question is, briefly, this—As
far as the laws of mathematics refer to redity, they are not certain;
and as far as they are cetain, they do nd refer to redity. It seemsto

15
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me that complete cleaness as to this date of things first became
common property throughthat new departure in mathematics which
is known by the name of mathematicd logic or “Axiomatics.” The
progress adhieved by axiomatics consists in its having redly
separated the logicd-formal from its ojedive or intuitive content;
acarding to axiomatics the logicd-formal aone forms the subjed-
matter of mathematics, which is not concerned with the intuitive or
other content associated with the logicd-formal.

Let us for a moment consider from this point of view any axiom
of geometry, for instance the following—Through two pants in
spacethere dways passes one and only one straight line. How is this
axiom to be interpreted in the older sense and in the more modern
sense?

The older interpretation.—Every one knows what a straight line
Is, and what a point is. Whether this knowledge springs from an
ability of the human mind a from experience, from some
collaboration d the two or from some other source is not for the
mathematician to dedde. He leaves the question to the phil osopher.
Being based upon this knowledge, which preceales all mathematics,
the axiom stated abowe is, like dl other axioms, self-evident, that is,
it isthe expresson d apart of thisa priori knowledge.

The more modern interpretation.—Geometry treds of entities
which are denoted by the words draight line, point, etc. These
entities do nd take for granted any knowledge or intuition whatever,
but they presuppase only the validity of the aiioms, such as the one
stated above, which are to be taken in a purely formal sense, i.e. as
void of all content of intuition or experience. These aioms are free
creaions of the human mind. All other propasitions of geometry are
logicd inferences from the axioms (which are to be taken in the
nominalistic sense only). The matter of which geometry treasis first
defined by the aioms. Schlick in his book on epistemology has
therefore dharaderised axioms very aptly as “implicit definitions.”

This view of axioms, advocaed by modern axiomatics, purges
mathematics of all extraneous elements, and thus dispels the mystic
obscurity which formerly surrounced the principles of mathematics.
But a presentation of its principles thus clarified makes it also
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evident that mathematics as sich canna predicae anything about
perceptual objeds or red objeds. In axiomatic geometry the words
“point,” “straight line,” etc., stand orly for empty conceptual
schemata. That which gves them substance is not relevant to
mathematics.

Yet on the other hand it is certain that mathematics generally,
and particularly geometry, owes its existence to the need which was
felt of leaning something abou the relations of red things to one
another. The very word geometry, which, of course, means earth-
measuring, proves this. For eath-measuring hes to do with the
posshiliti es of the disposition d certain natural objeds with resped
to ore anather, namely, with parts of the eath, measuring-lines,
measuring-wands, etc. It is clea that the system of concepts of
axiomatic geometry alone caanad make any asrtions as to the
relations of red objeds of this kind, which we will cdl pradicdly-
rigid bodes. To be dle to make such assrtions, geometry must be
stripped of its merely logicd-formal charader by the co-ordination
of red objeds of experience with the empty conceptual frame-work
of axiomatic geometry. To acaomplish this, we neeal only add the
propasition:—Solid bodies are related, with resped to their possble
dispositions, as are bodes in Euclidean geometry of three
dimensions. Then the propasitions of Euclid contain affirmations as
to therelations of pradicdly-rigid bodes.

Geometry thus completed is evidently a natural science; we may
in fad regard it as the most ancient branch of physics. Its
affirmations rest essentialy oninduction from experience, but not on
logicd inferences only. We will cdl this completed geometry
“pradicd geometry,” and shall distingush it in what foll ows from
“purely axiomatic geometry.” The question whether the pradicd
geometry of the universe is Euclidean or not has a dea meaning,
and its answer can orly be furnished by experience. All linea
measurement in physicsis pradicd geometry in this sense, so toois
geodetic and astronomical linea measurement, if we call to ou help
the law of experience that light is propagated in a straight line, and
indead in astraight linein the sense of pradica geometry.
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| attach spedal importanceto the view of geometry which | have
just set forth, because withou it | shoud have been ureble to
formulate the theory of relativity. Withou it the foll owing refledion
would have been impossble—In a system of reference rotating
relatively to an inert system, the laws of dispasition of rigid bodes
do nd correspond to the rules of Euclidean geometry on acmurt of
the Lorentz contraaion; thus if we admit nor-inert systems we must
abandon Euclidean geometry. The dedsive step in the transition to
general co-variant equations would certainly not have been taken if
the @owe interpretation had na served as a stepping-stone. If we
deny the relation ketween the body of axiomatic Euclidean geometry
and the pradicdly-rigid body of redity, we reaily arrive & the
following view, which was entertained by that aaute and profound
thinker, H. Poincaré—Euclidean geometry is distinguished above
al other imaginable aiomatic geometries by its smplicity. Now
since xiomatic geometry by itself contains no assertions as to the
redity which can be experienced, but can doso only in combination
with physicd laws, it shoud be possible and reasonable—whatever
may be the nature of redity—to retain Euclidean geometry. For if
contradictions between theory and experience manifest themselves,
we shoud rather dedde to change physicd laws than to change
axiomatic Euclidean geometry. If we deny the relation between the
pradicdly-rigid body and geometry, we shall indead not easily free
ourselves from the @nvention that Euclidean geometry is to be
retained as the simplest. Why is the equivalence of the pradicdly-
rigid bod/ and the body of geometry—which suggests itself so
readily—denied by Poincaé ad other investigators? Simply
becaise under closer inspedion the red solid bodes in nature ae
not rigid, becaise their geometricad behaviour, that is, ther
posshilities of relative disposition, depend upn temperature,
externa forces, etc. Thus the original, immediate relation ketween
geometry and physicd redlity appeas destroyed, and we fed
impelled toward the following more general view, which
charaderizes Poinca€s dandpant. Geometry (G) predicaes
nothing about the relations of red things, but only geometry together
with the purport (P) of physicd laws can do so. Using symbals, we
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may say that only the sum of (G) + (P) is sujea to the wntrol of
experience. Thus (G) may be dosen arbitrarily, and also perts of
(P); dl these laws are conventions. All that is necessary to avoid
contradictions is to choose the remainder of (P) so that (G) and the
whole of (P) are together in acard with experience. Envisaged in
this way, axiomatic geometry and the part of natural law which has
been gven a nventional status appea as epistemologicdly
equivalent.

Subspede aeterni Poincaré, in my opinion, is right. The ideaof
the measuring-rod and the ideaof the dock co-ordinated with it in
the theory of relativity do not find their exad corresponcencein the
red world. It isalso clea that the solid body and the dock do nd in
the conceptual edifice of physics play the part of irreducible
elements, but that of composite structures, which may nat play any
independent part in theoreticd physics. But it is my conviction that
in the present stage of development of theoreticd physics these ideas
must still be employed as independent ideas; for we are still far from
possesdng such certain knawvledge of theoreticd principles as to be
able to gve eact theoreticd constructions of solid bodes and
clocks.

Further, as to the objedion that there ae noredly rigid bodesin
nature, and that therefore the properties predicated of rigid bodes do
not apply to physicd redity,—this objedion is by no means ©
radicd as might appea from a hasty examination. For it is not a
difficult task to determine the physical state of a measuring-rod so
acarrately that its behaviour relatively to ather measuring-bodes
shall be sufficiently freefrom ambiguity to allow it to be substituted
for the “rigid” body. It is to measuring-bodes of this kind that
statements as to rigid bodes must be referred.

All pradical geometry is based upon a principle which is
accessble to experience, and which we will now try to redise. We
will cdl that which is enclosed between two boundaries, marked
upona praaicdly-rigid body, a tract. We imagine two pradicdly-
rigid bodes, ea with atraad marked ou onit. These two trads are
said to be “equal to ore anather” if the boundaries of the one trad
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can be brough to coincide permanently with the boundaries of the
other. We now assume that:

If two trads are foundto be egqual once and anywhere, they are
equal aways and everywhere.

Not only the practicd geometry of Euclid, but also its neaest
generalisation, the pradicad geometry of Riemann, and therewith the
general theory of relativity, rest upon this assumption. Of the
experimental reasons which warrant this assumption | will mention
only one. The phenomenon d the propagation d light in empty
space a@ggns a trad, namely, the gpropriate path of light, to eat
interval of locd time, and conversely. Thence it follows that the
above ssaumption for trads must also hdd good for intervals of
clock-time in the theory of relativity. Consequently it may be
formulated as follows.—If two ideal clocks are going at the same
rate & any time and at any place(being then in immediate proximity
to eat ather), they will aways go at the same rate, no matter where
and when they are again compared with ead ather at one place—If
this law were nat valid for red clocks, the proper frequencies for the
separate @oms of the same demicd element would na be in such
exad agreement as experience demonstrates. The existence of sharp
spedral lines is a @nvincing experimental proof of the above-
mentioned principle of pradicd geometry. This is the ultimate
foundation in fad which enables us to spe& with meaning d the
mensuration, in Riemann's sense of the word, of the four-
dimensional continuum of spacetime.

The question whether the structure of this continuum is
Euclidean, or in acmordance with Riemann's general scheme, or
otherwise, is, according to the view which is here being advocated,
properly spe&ing a physicd question which must be answered by
experience, and nd a question of a mere convention to be seleded
on pradicd grounds. Riemann's geometry will be the right thing if
the laws of disposition of pradicdly-rigid bodes are transformable
into those of the bodes of Euclid’s geometry with an exaditude
which increases in propartion as the dimensions of the part of space
time under consideration are diminished.
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It is true that this proposed physicd interpretation d geometry
bregks down when applied immediately to spaces of sub-molecular
order of magnitude. But nevertheless even in guestions as to the
constitution of elementary particles, it retains part of its importance.
For even when it isaquestion d describing the dedricd elementary
particles constituting matter, the atempt may still be made to ascribe
physicd importance to those ideas of fields which have been
physicdly defined for the purpose of describing the geometricd
behaviour of bodies which are large & compared with the moleaule.
Successalone can dedde as to the justificaion of such an attempt,
which postulates physicd redity for the fundamental principles of
Riemann's geometry outside of the domain of ther physicd
definitions. It might possbly turn out that this extrapolation has no
better warrant than the extrapolation of the idea of temperature to
parts of abody of moleaular order of magnitude.

It appeas less problematicd to extend the ideas of pradicd
geometry to spaces of cosmic order of magnitude. It might, of
course, be objeded that a cnstruction composed of solid rods
departs more and more from ided rigidity in proportion as its speatial
extent becomes greder. But it will hardly be possble, | think, to
assgn fundamental significance to this objedion. Therefore the
guestion whether the universe is gatialy finite or not seems to me
deadedly a pregnant question in the sense of pradicd geometry. |
do nd even consider it impossble that this question will be
answered before long by astronomy. Let us cdl to mind what the
general theory of relativity teaches in this resped. It offers two
posshiliti es.—

1. The universe is atidly infinite. This can be so only if the
average spatial density of the matter in unversal space concentrated
in the stars, vanishes, i.e. if theratio of the total massof the stars to
the magnitude of the space through which they are scatered
approximates indefinitely to the value zeo when the spaces taken
into consideration are cnstantly greater and geder.

2. The universe is spatiadly finite. This must be so, if there is a
mean density of the ponderable matter in unversal spacediffering
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from zero. The smaller that mean density, the greater is the volume
of universal space

| must not fail to mention that a theoreticd argument can be
adduced in favour of the hypothesis of afinite universe. The general
theory of relativity teades that the inertia of a given body is greaer
as there ae more poncerable masses in proximity to it; thus it seems
very natural to reduce the total effed of inertia of a body to adion
and readion between it and the other bodes in the universe, as
indeed, ever since Newton's time, gravity has been completely
reduced to adion and readion ketween bodes. From the ejuations
of the general theory of relativity it can be deduced that this total
reduction d inertia to redprocd adion letween masses—as
required by E. Mach, for example—is passble only if the universeis
gpatially finite.

On many physicists and astronomers this argument makes no
impresson. Experience done can finaly dedde which o the two
posshiliti es is redised in nature. How can experience furnish an
answer? At first it might seem posshble to determine the mean
density of matter by observation of that part of the universe which is
accessble to ou perception. This hope is illusory. The distribution
of the visible stars is extremely irregular, so that we on no ac@unt
may venture to set down the mean density of star-matter in the
universe & equal, let us sy, to the mean density in the Milky Way.
In any case, however gred the space examined may be, we would na
fed convinced that there were no more stars beyondthat space So it
seems impossble to estimate the mean density.

But there is ancther road, which seems to me more pradicable,
athoughit also presents grea difficulties. For if we inqure into the
deviations $own by the mnsequences of the general theory of
relativity which are accessble to experience, when these ae
compared with the consequences of the Newtonian theory, we first
of al find a deviation which shows itself in close proximity to
gravitating mass and hes been confirmed in the cae of the planet
Mercury. But if the universe is gatialy finite there is a second
deviation from the Newtonian theory, which, in the language of the
Newtonian theory, may be expressd thus.—The gravitationa field
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IS in its nature such as if it were produced, not only by the
poncerable masses, but also by a massdensity of negative sign,
distributed uniformly throughou space Since this factitious mass
density would have to be enormously small, it could make its
presencefelt only in gravitating systems of very grea extent.

Asauming that we know, let us sy, the statisticd distribution d
the stars in the Milky Way, as well as their masss, then by
Newton's law we can cdculate the gravitational field and the mean
velocities which the stars must have, so that the Milky Way shoud
not collapse under the mutual attradion d its dars, but shoud
maintain its adual extent. Now if the adual velocities of the stars,
which can, of course, be measured, were small er than the cdculated
velocities, we should have a proof that the adual attradions at gred
distances are smaller than by Newton's law. From such adeviation it
could be proved indiredly that the universe is finite. It would even
be possble to estimate its gatial magnitude.

Can we picture to ouselves a threedimensional universe which
isfinite, yet unbaunded?

The usua answer to this question is “No,” but that is not the
right answer. The purpose of the following remarks is to show that
the answer shoud be “Yes” | want to show that withou any
extraordinary difficulty we cen illustrate the theory of a finite
universe by means of a mental image to which, with some pradice,
we shall soon gow acaistomed.

First of al, an observation d epistemologicd nature. A
geometricd-physical theory as sich is incgpable of being dredly
pictured, being merely a system of concepts. But these @ncepts
serve the purpose of bringing a multiplicity of red or imaginary
Sensory experiences into connedion in the mind. To “visualise’ a
theory, or bring it home to ore's mind, therefore means to gve a
representation to that abundance of experiences for which the theory
supdies the schematic arrangement. In the present case we have to
ask ourselves how we can represent that relation o solid bodes with
resped to their reciprocd dispaosition (contad) which corresponds to
the theory of afinite universe. There is redly nothing new in what |
have to say abou this; but innumerable questions addressed to me
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prove that the requirements of those who thirst for knowledge of
these matters have nat yet been completely satisfied. So, will the
initiated please pardonme, if part of what | shall bring forward has
longbeen known?

What do we wish to express when we say that our spaceis
infinite? Nothing more than that we might lay any number whatever
of bodies of equal sizes sde by side withou ever filling space
Suppase that we ae provided with agrea many wooden cubes all of
the same size In acmrdance with Euclidean geometry we can place
them abowve, beside, and behind ore ancther so as to fill a part of
gpace of any dimensions; but this construction would never be
finished; we wuld go onadding more and more aubes withou ever
finding that there was no more room. That is what we wish to
expresswhen we say that spaceis infinite. It would be better to say
that spaceis infinite in relation to pradicdly-rigid bodes, assuming
that the laws of disposition for these bodes are given by Euclidean
geometry.

Anather example of an infinite cntinuum is the plane. On a
plane surfacewe may lay squares of cadbacard so that eat side of
any square has the side of ancther square aljacent to it. The
constructionis never finished; we can always go a laying squares—
If their laws of disposition correspond to those of plane figures of
Euclidean geometry. The plane is therefore infinite in relation to the
cadbaoard squares. Accordingly we say that the plane is an infinite
continuum of two dimensions, and space a infinite continuum of
threedimensions. What is here meant by the number of dimensions,
| think | may assume to be known.

Now we take an example of atwo-dimensional continuum which
is finite, but unbounded. We imagine the surfaceof alarge globe and
a quantity of small paper discs, al of the same size. We placeone of
the discs anywhere on the surfaceof the globe. If we move the disc
abou, anywhere we like, on the surface of the globe, we do nd
come upona limit or boundary anywhere on the journey. Therefore
we say that the sphericd surface of the globe is an unbaunded
continuum. Moreover, the sphericd surfaceis a finite continuum.
For if we stick the paper discs on the globe, so that no dsc overlaps
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ancther, the surface of the globe will finally become so full that
there is no room for ancther disc. This smply means that the
spherica surfaceof the globe is finite in relation to the paper discs.
Further, the sphericd surfaceis a non-Euclidean continuum of two
dimensions, that isto say, the laws of dispasitionfor the rigid figures
lying in it do nd agreewith those of the Euclidean plane. This can
be shown in the following way. Place apaper disc on the sphericd
surface and aroundit in a drcle place six more discs, each of which
IS to be surrounded in turn by six discs, and so on. If this
construction is made on a plane surface we have an uninterrupted
dispasition in which there ae six discs touching every disc except
those which lie on the outside. On the sphericd surface the

Fig. 1.

construction also seems to promise success at the outset, and the
smaller the radius of the disc in proportion to that of the sphere, the
more promising it seems. But as the nstruction pogresses it
becomes more and more patent that the disposition of the discsin the
manner indicaed, withou interruption, is not possble, as it should
be possble by Euclidean geometry of the plane surface. In this way
creaures which canna leare the sphericd surface and canna even
peg ou from the sphericd surfaceinto threedimensional space
might discover, merely by experimenting with dscs, that their two-
dimensional “space” is not Euclidean, but sphericd space.

From the latest results of the theory of relativity it is probable
that our three-dimensional space is aso approximately spherical,
that is, that the laws of disposition d rigid bodies in it are not given
by Euclidean geometry, but approximately by spherical geometry, if
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only we onsider parts of spacewhich are sufficiently great. Now
this is the place where the reader’s imagination bogles. “Nobody
can imagine this thing,” he aies indignantly. “It can be said, but
canna be thought. | can represent to myself a sphericd surfacewell
enough but nothing analogowsto it in threedimensions.”

We must try to surmourt this barrier in the mind, and the patient
reader will seethat it is by nomeans a particularly difficult task. For
this purpose we will first give our attention orce more to the
geometry of two-dimensional sphericd surfaces. In the aljoining
figure let K be the sphericd surface, touched at S by a plane, E,
which, for fadlity of presentation, is dhown in the drawing as a
bounded surface Let L be adisc onthe sphericd surface Now let us
imagine that at the point N of the sphericd surface diametrically
oppdaite to S there is aluminous point, throwing a shadow L' of the
disc L upon the plane E. Every point on the sphere has its shadow on
the plane. If the disc on the sphere K is moved, its shadow L' on the
plane E also moves. When the disc L is a S it amost exadly
coincides with its shadow. If it moves on the sphericd surfaceaway
from S upwards, the disc shadow L' on the plane dso moves away
from S on the plane outwards, growing kdgger and kdgger. As the
disc L approaches the luminous point N, the shadow moves off to
infinity, and beacomes infinitely great.
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Now we put the question, What are the laws of disposition of the
disc-shadows L' on the plane E? Evidently they are exactly the same
as the laws of disposition of the discs L on the spherica surface For
to ead original figure on K there is a crrespondng shadow figure
on E. If two dscs on K are touching, their shadows on E also touch.
The shadow-geometry on the plane agrees with the disc-geometry on
the sphere. If we cdl the disc-shadows rigid figures, then sphericd
geometry holds good onthe plane E with resped to these rigid
figures. Moreover, the plane is finite with resped to the disc-
shadows, since only a finite number of the shadows can find room
onthe plane.

At this point somebody will say, “That is norsense. The disc-
shadows are nat rigid figures. We have only to move atwo-foaot rule
abou on the plane E to convince ourselves that the shadows
constantly increase in size & they move avay from S on the plane
towards infinity.” But what if the two-foot rule were to behave on
the plane E in the same way as the disc-shadows L' ? It would then
be impossble to show that the shadows increase in size & they
move away from S; such an assertion would then nolonger have ay
meaning whatever. In fad the only oljedive aertion that can be
made abou the disc-shadows is just this, that they are related in
exadly the same way as are the rigid dscs on the sphericd surface
in the sense of Euclidean geometry.

We must carefully bear in mind that our statement as to the
growth o the disc-shadows, as they move avay from S towards
infinity, has in itself no objedive meaning, as long as we ae unable
to employ Euclidean rigid bodes which can be moved abou on the
plane E for the purpose of comparing the size of the disc-shadows.
In resped of the laws of disposition of the shadows L', the point S
has no speaal privileges on the plane any more than onthe sphericd
surface

The representation gven above of sphericd geometry on the
plane is important for us, becaise it reaily alows itself to be
transferred to the threedimensional case.

Let us imagine apoint S of our space and a grea number of
small spheres, L', which can all be brough to coincide with ore
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another. But these spheres are not to be rigid in the sense of
Euclidean geometry; their radius is to increase (in the sense of
Euclidean geometry) when they are moved away from S towards
infinity, and this increase is to take placein exad acardance with
the same law as applies to the increase of the radii of the disc-
shadows L' onthe plane.

After having gained a vivid mental image of the geometricd
behaviour of our L' spheres, let us assume that in ou spacethere ae
no rigid bodies at all in the sense of Euclidean geometry, but only
bodes having the behaviour of our L' spheres. Then we shall have a
vivid representation d threedimensional sphericd space, or, rather
of threedimensional sphericd geometry. Here our spheres must be
cdled “rigid” spheres. Their increase in size a they depart from Sis
not to be deteded by measuring with measuring-rods, any more than
in the cae of the disc-shadows on E, becaise the standards of
measurement behave in the same way as the spheres. Space is
homogeneous, that is to say, the same sphericd configurations are
possble in the environment of al points! Our space is finite,
because, in consequence of the “growth” of the spheres, only afinite
number of them can find room in space

In this way, by using as stepping-stones the pradice in thinking
and Msualisation which Euclidean geometry gives us, we have
aajuired a mental picture of sphericd geometry. We may withou
difficulty impart more depth and vigou to these ideas by carying
out spedal imaginary constructions. Nor would it be difficult to
represent the cae of what is cdled dlipticd geometry in an
analogows manner. My only aim to-day has been to show that the
human faaulty of visualisation is by no means boundto capitulate to
non-Euclidean geometry.

! This is intelli gible without cdculation—but only for the two-dimensional
case—if we revert once more to the cae of the disc on the surfaceof the sphere.
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