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NOTE I. (p. 93). The law of diminution of marginal utility may
be expressed thus:—If u be the total utility of an amount x of
a commodity to a given person at a given time, then marginal

utility ismeasured by
du

dx
· δx; while

du

dx
measures themarginal

degree of utility. Jevons and some other writers use “Final
utility " to indicate what Jevons elsewhere calls Final degree of
utility. There is room for doubt as to which modeof expression
is the more convenient: no question of principle is involved in
the decision. Subject to the qualifications mentioned in the text
d2u

dx2 is always negative.

NOTE II . (p. 96). If m istheamount of money or general purchas-
ing power at a person’s disposal at any time, and µ represents

its total utility to him, then
dµ

dm
represents the marginal degree

of utility of money to him.

If p is the price which he is just willin g to pay for an amount x
of thecommodity which gives him atotal pleasureu, then

dµ

dm
�p = �u; and

dµ

dm

dp

dx
= du

dx
.

If p′ is the price which he is just willin g to pay for an amount
x′ of another commodity, which affords him atotal pleasureu′,
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then
dµ

dm
· dp

′

dx′ = du′

dx′ ;

and therefore
dp

dx
: dp

′

dx′ = du

dx
: du

′

dx′ .

(Compare Jevons’ chapter on theTheory of Exchange, p. 151.)

Every increase in his means diminishes the marginal degree of

utility of money to him; that is,
d2µ

dm2 is always negative.

Therefore, the marginal utility to him of an amountx of a com-
modity remaining unchanged, an increase in his means increases
du

dx
÷ dµ

dm
; i.e. it increases

dp

dx
, that is, the rate at which he is

willing to pay for further supplies of it. We may regard
dp

dx

as a function ofm, u, andx; and then we have
d2p

dmdx
always

positive. Of course
d2p

du dx
is always positive.

NOTE III. (p. 103). Let P,P ′ be consecutive points on the
demand curve; let
PRM be drawn
perpendicular toOx,
and let PP ′ cut
Ox and Oy in T

and t respectively;
so thatP ′R is that
increment in the
amount demanded
which corresponds
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to a diminutionPR in the price per unit of the commodity.

Then the elasticity of demand atP is measured by

P ′R
OM

÷ PR

PM
, i.e. by

P ′R
PR

× PM

OM
;

i.e. by
TM

PM
× PM

OM
,

i.e. by
TM

OM
or by

PT

P t
.

When the distance betweenP andP ′ is diminished indefinitely,
PP ′ becomes the tangent; and thus the proposition stated on p.
103 is proved.

It is obviousà priori that the measure of elasticity cannot be
altered by altering relatively to one another the scales on which
distances parallel toOx andOy are measured. But a geometrical
proof of this result can be got easily by the method of projec-

tions: while analytically it is clear that
dx

x
÷ −dy

y
, which is

the analytical expression for the measure of elasticity, does not
change its value if the curvey = f (x) be drawn to new scales,
so that its equation becomesqy = f (px); wherep andq are
constants.

If the elasticity of demand be equal to unity for all prices of the
commodity, any fall in price will cause a proportionate increase
in the amount bought, and therefore will make no change in the
total outlay which purchasers make for the commodity. Such a
demand may therefore be called aconstant outlay demand. The
curve which represents it, aconstant outlay curve, as it may be



called, is a rectangular hyperbola withOx andOy as asymptotes;
and a series of such curves are represented by the dotted curves
in the following figure.

There is some advantage in accustoming the eye to the shape of
these curves; so that when looking at a demand curve one can
tell at once whether it is inclined to the vertical at any point at
a greater or less angle than the part of a constant outlay curve,
which would pass through that point. Greater accuracy may be
obtained by tracing constant outlay curves on thin paper, and
then laying the paper over the demand curve. By this means it
may, for instance, be seen at once that the demand curve in the
figure represents at each of the pointsA,B,C andD an elasticity
about equal to one: betweenA andB, and again betweenC and
D, it represents an elasticity greater than one; while betweenB

andC it represents an elasticity less than one. It will be found
that practice of this kind makes it easy to detect the nature of
the assumptions with regard to the character of the demand for
a commodity, which are implicitly made in drawing a demand
curve of any particular shape; and is a safeguard against the
unconscious introduction of improbable assumptions.

http://www.econlib.org/library/Marshall/marPAppArt.html#Math Appendix, Figure 2


The general equation to demand curves representing at every

point an elasticity equal ton is
dx

x
+ n

dy

y
= 0, i.e. xyn = C.

It is worth noting that in such a curve
dx

dy
= − C

yn+1; that is, the

proportion in which the amount demanded increases in conse-
quence of a small fall in the price varies inversely as the(n+1)th

power of the price. In the case of the constant outlay curves it
varies inversely as the square of the price; or, which is the same
thing in this case, directly as the square of the amount.

NOTE IV. (p. 110). The lapse of
time being measured downwards
along Oy; and the amounts, of
which record is being made, be-
ing measured by distances from
Oy; thenP ′ andP being adjacent
points on the curve which traces
the growth of the amount, the rate
of increase in a small unit of time
N ′N is

PH

P ′N ′ = PH

P ′H
· P

′H
P ′N ′ = PN

Nt
· P

′H
P ′N ′ = P ′H

Nt
;

sincePN andP ′N ′ are equal in the limit.

If we take a year as the unit of time we find the annual rate of
increase represented by the inverse of the number of years inNt .

If Nt were equal toc, a constant for all points of the curve, then

the rate of increase would be constant and equal to
1

c
. In this
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case−x
dy

dx
= c for all values ofx; that is, the equation to the

curve isy = a − c logx

NOTE V. (p. 123). We have seen in the text that the rate at
which future pleasures are discounted varies greatly from one
individual to another. Letr be the rate of interest per annum,
which must be added to a present pleasure in order to make it
just balance a future pleasure, that will be of equal amount to its
recipient, when it comes; thenr may be 50 or even 200 per cent.
to one person, while for his neighbour it is a negative quantity.
Moreover some pleasures are more urgent than others; and it is
conceivable even that a person may discount future pleasures in
an irregular random way; he may be almost as willing to postpone
a pleasure for two years as for one; or, on the other hand, he may
object very strongly indeed to a long postponement, but scarcely
at all to a short one. There is some difference of opinion as to
whether such irregularities are frequent; and the question cannot
easily be decided; for since the estimate of a pleasure is purely
subjective, it would be difficult to detect them if they did occur.
In a case in which there are no such irregularities, the rate of
discount will be the same for each element of time; or, to state the
same thing in other words, it will obey the exponential law. And
if h be the future amount of a pleasure of which the probability is
p, and which will occur, if at all, at timet ; and ifR = 1+r; then
the present value of the pleasure isphR−t . It must, however,
be borne in mind that this result belongs to Hedonics, and not
properly to Economics.

Arguing still on the same hypothesis we may say that, if! be
the probability that a person will derive an element of happiness,
�h, from the possession of, say, a piano in the element of time



�t , then the present value of the piano to him is
∫ T

0
!R−t dh

dt
dt .

If we are to include all the happiness that results from the event
at whatever distance of time we must takeT = ∞. If the source

of pleasure is in Bentham’s phrase “impure,”
dh

dt
will probably

be negative for some values oft ; and of course the whole value
of the integral may be negative.

NOTE VI. (pp. 132, 3). Ify be the price at which an amount
x of a commodity can find purchasers in a given market, and
y = f (x) be the equation to the demand curve, then the total
utility of the commodity is measured by

∫ a

0 f (x)dx, wherea is
the amount consumed.

If however an amountb of the commodity is necessary for ex-
istence,f (z) will be infinite, or at least indefinitely great, for
values ofx less thanb. We must therefore take life for granted,
and estimate separately the total utility of that part of the supply
of the commodity which is in excess of absolute necessaries: it
is of course

∫ a

b
f (x)dx.

If there are several commodities which will satisfy the same
imperative want, as e.g. water and milk, either of which will
quench thirst, we shall find that, under the ordinary conditions
of life, no great error is introduced by adopting the simple plan
of assuming that the necessary supply comes exclusively from
that one which is cheapest.

It should be noted that, in the discussion of consumers’ surplus,
we assume that the marginal utility of money to the individual
purchaser is the same throughout. Strictly speaking we ought to
take account of the fact that if he spent less on tea, the marginal



utility of money to him would be less than it is, and he would
get an element of consumer’s surplus from buying other things
at prices which now yield him no such rent. But these changes
of consumers’ rent (being of the second order of smallness) may
be neglected, on the assumption, which underlies our whole rea-
soning, that his expenditure on any one thing, as, for instance,
tea, is only a small part of his whole expenditure. (Compare
Book V. ch. II . §3.) If, for any reason, it be desirable to take
account of the influence which his expenditure on tea exerts on
the value of money to him, it is only necessary to multiplyf (x)

within the integral given above by that function ofxf (x) (i.e. of
the amount which he has already spent on tea) which represents
the marginal utility to him of money when his stock of it has
been diminished by that amount.

NOTE VII. (p. 134). Thus ifa1, a2, a3, . . . be the amounts con-
sumed of the several commodities of whichb1, b2, b3, . . . are
necessary for existence, ify = f1(x), y = f2(x), y = f3(x), . . .

be the equations to their demand curves and if we may neglect
all inequalities in the distribution of wealth; then the total utility
of income, subsistence being taken for granted, might be rep-
resented by$

∫ a

b
f (x)dx, if we could find a plan for grouping

together in one common demand curve all those things which
satisfy the same wants, and are rivals; and also for every group of
things of which the services are complementary (see Book V. ch.
VI). But we cannot do this: and therefore the formula remains
a mere general expression, having no practical application. See
footnote on pp. 131, 2; also the latter part of Note XIV.

NOTEVIII. (p. 135). If y be the happiness which a person derives
from an incomex; and if, after Bernoulli, we assume that the
increased happiness which he derives from the addition of one



per cent. to his income is the same whatever his income be, we

havex
dy

dx
= K, and ... y = K logx + C whenK andC are

constants. Further with Bernoulli let us assume that,a being the
income which affords thebarest necessaries of life, pain exceeds
pleasure when the income is less thana, and balances it when the

income equalsa; then our equation becomesy = K log
x

a
. Of

course bothK anda vary with the temperament, the health, the
habits, and the social surroundings of each individual. Laplace
gives tox the namefortune physique, and toy the namefortune
morale.

Bernoulli himself seems to have thought ofx anda as represent-
ing certain amounts of property rather than of income; but we
cannot estimate the property necessary for life without some un-
derstanding as to the length of time during which it is to support
life, that is, without really treating it as income.

Perhaps the guess which has attracted most attention after Ber-
noulli’s is Cramer’s suggestion that the pleasure afforded by
wealth may be taken to vary as the square root of its amount.

NOTE IX. (p. 135). The argument that fair gambling is an eco-
nomic blunder is generally based on Bernoulli’s or some other
definite hypothesis. But it requires no further assumption than
that, firstly the pleasure of gambling may be neglected; and, sec-
ondly φ′′(x) is negative for all values ofx, whereφ(x) is the
pleasure derived from wealth equal tox.

For suppose that the chance that a particular event will happen is
p, and a man makes a fair bet ofpy against(1−p)y that it will
happen. By so doing he changes his expectation of happiness



from

φ(x) to pφ{x + (1 − p)y} + (1 − p)φ(x − py).

This when expanded by Taylor’s Theorem becomes

φ(x) +1

2
p(1 − p)2y2φ′′{x + θ(1 − p)y}

+1

2
p2(1 − p)y2φ′′(x −(py);

assumingφ′′(x) to be negative for all values ofx, this is always
less thanφ(x).

It is true that this loss of probable happiness need not be greater
than the pleasure derived from the excitement of gambling, and
we are then thrown back upon the induction that pleasures of
gambling are in Bentham’s phrase “impure”; since experience
shows that they are likely to engender a restless, feverish charac-
ter, unsuited for steady work as well as for the higher and more
solid pleasures of life.

NOTE X. (p. 142). Following on the same lines as in Note I.,
let us takev to represent the disutility or discommodity of an

amount of labourl, then
dv

dl
measures the marginal degree of

disutility of labour; and, subject to the qualifications mentioned

in the text,
d2v

dl2
is positive.

Let m be the amount of money or general purchasing power at

a person’s disposal,µ its total utility to him, and therefore
dµ

dm
its marginal utility. Thus if�w be the wages that must be paid

him to induce him to do labour�l, then�w
dµ

dm
= �v, and



dw

dl
· dµ
dm

= dv

dl
.

If we assume that his dislike to labour is not a fixed, but a fluc-

tuating quantity, we may regard
dw

dl
as a function ofm, v, and

l; and then both
d2w

dm dl
,
d2w

dv dl
are always positive.

NOTE XI. (p. 248). If members of any species of bird begin
to adopt aquatic habits, every increase in the webs between the
toes—whether coming about gradually by the operation of nat-
ural selection, or suddenly as a sport,—will cause them to find
their advantage more in aquatic life, and will make their chance
of leaving offspring depend more on the increase of the web. So
that, if f (t) be the average area of the web at timet , then the
rate of increase of the web increases (within certain limits) with
every increase in the web, and thereforef ′′(t) is positive. Now
we know by Taylor’s Theorem that

f (t + h) = f (t)+ hf ′(t)+ h2

1.2
f ′′(t + θh);

and ifh be large, so thath2 is very large, thenf (t + h) will be
much greater thanf (t) even thoughf ′(t) be small andf ′′(t) is
never large. There is more than a superficial connection between
the advance made by the applications of the differential calculus
to physics at the end of the eighteenth century and the beginning
of the nineteenth, and the rise of the theory of evolution. In
sociology as well as in biology we are learning to watch the
accumulated effects of forces which, though weak at first, get
greater strength from the growth of their own effects; and the
universal form, of which every such fact is a special embodiment,
is Taylor’s Theorem; or, if the action of more than one cause at a



time is to be taken account of, the corresponding expression of a
function of several variables. This conclusion will remain valid
even if further investigation confirms the suggestion, made by
some Mendelians, that gradual changes in the race are originated
by large divergences of individuals from the prevailing type.
For economics is a study of mankind of particular nations, of
particular social strata; and it is only indirectly concerned with
the lives of men of exceptional genius or exceptional wickedness
and violence.

NOTE XII. (p. 331). If, as in Note X.,v be the discommodity
of the amount of labour which a person has to exert in order to
obtain an amountx of a commodity from which he derives a
pleasureu, then the pleasure of having further supplies will be

equal to the pain of getting them when
du

dx
= dv

dx
.

If the pain of labour be regarded as a negative pleasure; and we

writeU ≡ −v; then
du

dx
+ du

dx
= 0, i.e.u+U = a maximum at

the point at which his labour ceases.

NOTE XII. bis (p. 793). In an article in theGiornale degli
Economisti for February, 1891, Prof. Edgeworth draws the
adjoining diagram, which rep-
resents the cases of barter of
apples for nuts described on
pp. 414–6. Apples are mea-
sured alongOx, and nuts along
Oy; Op = 4, pa = 40; and
a represents the termination of
the first bargain in which 4 ap-
ples have been exchanged for
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40 nuts, in the case in whichA gets the advantage at starting:
b represents the second, andc the final stage of that case. On
the other hand,a′ represents the first, andb′, c′, d ′ the second,
third, and final stages of the set of bargains in whichB gets the
advantage at starting.QP , the locus on whichc andd ′ must
both necessarily lie, is called by Prof. Edgeworth theContract
Curve.

Following a method adopted in hisMathematical Psychics (1881),
he takesU to represent the total utility toA of apples and nuts
when he has given upx apples and receivedy nuts,V the total
utility to B of apples and nuts when he has receivedx apples and
given upy nuts. If an additional�x apples are exchanged for
�y nuts, the exchange will be indifferent toA if

dU

dx
�x + dU

dy
�y = 0;

and it will be indifferent toB if
dV

dx
�x + dV

dy
�y = 0. These,

therefore, are the equations to the indifference curvesOP and
OQ of the figure respectively; and the contract curve which
is the locus of points at which the terms of exchange that are
indifferent toA are also indifferent toB has the elegant equation
dU

dx
÷ dU

dy
= dV

dx
÷ dV

dy
.

If the marginal utility of nuts be constant forA and also forB,
dU

dy
and

dV

dy
become constant;U becomes1(a − x)+ αy, and

V becomes3(a − x) + βy; and the contract curve becomes
F(x) = 0; or x = C; that is, it is a straight line parallel to
Oy, and the value of�y : �x given by either of the indifference
curves, a function ofC; thus showing that by whatever route the
barter may have started, equilibrium will have been found at a



point at whichC apples have been exchanged, and the final rate
of exchange is a function ofC; that is, it is a constant also. This
last application of Prof. Edgeworth’s mathematical version of
the theory of barter, to confirm the results reached in the text,
was first made by Mr Berry, and is published in theGiornale
degli Economisti for June, 1891.

Prof. Edgeworth’s plan of representingU andV as general func-
tions ofx andy has great attractions to the mathematician; but
it seems less adapted to express the every-day facts of economic
life than that of regarding, as Jevons did, the marginal utilities
of apples as functions ofx simply. In that case, ifA had no nuts
at starting, as is assumed in the particular case under discussion,
U takes the form∫ x

0
φ1(a − x)dx +

∫ y

0
ψ1(y)dy;

similarly for V . And then the equation to the contract curve is
of the form

φ1(a − x)÷ ψ1(y) = φ2(x)÷ ψ2(b − y);
which is one of the Equations of Exchange in Jevon’sTheory,
2nd Edition, p. 108.

NOTE XIII. (p. 354). Using the same notation as in Note V., let
us take our starting-point as regards time at the date of beginning
to build the house, and letT ′ be the time occupied in building
it. Then the present value of the pleasures, which he expects to
derive from the house, is

H =
∫ T

T ′
!R−t dh

dt
dt.

Let �v be the element of effort that will be incurred by him in



building the house in the interval of time�t (between the time
t and the timet + �t), then the present value of the aggregate
of effort is

V =
∫ T ′

0
R−t dv

dt
dt.

If there is any uncertainty as to the labour that will be required,
every possible element must be counted in, multiplied by the
probability, !

′
, of its being required; and thenV becomes∫ T ′

0
!R−t dv

dt
dt .

If we transfer the starting-point to the date of the completion of
the house, we have

H =
∫ T1

0
!R−t dh

dt
dt and V =

∫ T ′

0
!Rt dv

dt
dt,

whereT1 = T − T ′; and this starting-point, though perhaps the
less natural from the mathematical point of view, is the more
natural from the point of view of ordinary business. Adopting
it, we seeV as the aggregate of estimated pains incurred; each
bearing on its back, as it were, the accumulated burden of the
waitings between the time of its being incurred and the time
when it begins to bear fruit.

Jevons’ discussion of the investment of capital is somewhat in-
jured by the unnecessary assumption that the function represent-
ing it is an expression of the first order; which is the more remark-
able as he had himself, when describing Gossen’s work, pointed
out the objections to the plan followed by him (and Whewell) of
substituting straight lines for the multiform curves that represent
the true characters of the variations of economic quantities.



NOTEXIV. (p. 357). Letα1, α2, α3, . . .be the several amounts of
different kinds of labour, as, for instance, wood-cutting, stone-
carrying, earth-digging, etc., on the part of the man in question
that would be used in building the house on any given plan; and
β, β ′, β ′′, etc., the several amounts of accommodation of differ-
ent kinds such as sitting-rooms, bed-rooms, offices, etc. which
the house would afford on that plan. Then, usingV andH as in
the previous note,V, β, β ′, β ′′ are all functions ofα1, α2, α3, . . .,
andH being a function ofβ, β ′, β ′′, . . . is a function also of
α1, α2, α3, . . . We have, then, to find the marginal investments
of each kind of labour for each kind of use.

dV

da1
= dH

dβ

dβ

da1
= dH

dβ ′
dβ ′

da1
= dH

dβ ′′
dβ ′′

da1
= − · · ·

dV

da2
= dH

dβ

dβ

da2
= dH

dβ ′
dβ ′

da2
= dH

dβ ′′
dβ ′′

da2
= · · · ·

These equations represent a balance of effort and benefit. The
real cost to him of a little extra labour spent on cutting timber
and working it up is just balanced by the benefit of the extra
sitting-room or bed-room accommodation that he could get by
so doing. If, however, instead of doing the work himself, he pays
carpenters to do it, we must takeV to represent, not his total ef-
fort, but his total outlay of general purchasing power. Then the
rate of pay which he is willing to give to carpenters for further
labour, his marginal demand price for their labour, is measured

by
dV

da
; while

dH

dβ
,
dH

dβ ′ are the money measures to him of the

marginal utilities of extra sitting-room and bed-room accommo-
dation respectively, that is, his marginal demand prices for them;

and
dβ

da
,
dβ ′

da
are the marginal efficiencies of carpenters’ labour



in providing those accommodations. The equations then state
that the demand price for carpenters’ labour tends to be equal
to the demand price for extra sitting-room accommodation, and
also for extra bed-room accommodation and so on, multiplied in
each case by the marginal efficiency of the work of carpenters in
providing that extra accommodation, proper units being chosen
for each element.

When this statement is generalized, so as to cover all the var-
ied demand in a market for carpenters’ labour, it becomes:—the
(marginal) demand price for carpenters’ labour is the (marginal)
efficiency of carpenters’ labour in increasing the supply of any
product, multiplied by the (marginal) demand price for that prod-
uct. Or, to put the same thing in other words, the wages of a unit
of carpenters’ labour tends to be equal to the value of such part
of any of the products, to producing which their labour con-
tributes, as represents the marginal efficiency of a unit of car-
penters’ labour with regard to that product; or, to use a phrase,
with which we shall be much occupied in Book VI ch.I., it
tends to be equal to the value of the “net product” of their labour.
This proposition is very important and contains within itself the
kernel of the demand side of the theory of distribution.

Let us then suppose a master builder to have it in mind to erect
certain buildings, and to be considering what different accom-
modation he shall provide; as, for instance, dwelling-houses,
warehouses, factories, and retail shop-room. There will be two
classes of questions for him to decide: how much accommoda-
tion of each kind he shall provide, and by what means he shall
provide it. Thus, besides deciding whether to erect villa resi-
dences, offering a certain amount of accommodation, he has to
decide what agents of production he will use, and in what pro-



portions: whether e.g. he will use tile or slate; how much stone
he will use; whether he will use steam power for making mortar
etc. or only for crane work; and, if he is in a large town, whether
he will have his scaffolding put up by men who make that work
a speciality or by ordinary labourers; and so on.

Let him then decide to provide an amountβ of villa accommo-
dation, an amountβ ′ of warehouse, an amountβ ′′ of factory
accommodation, and so on, each of a certain class. But, instead
of supposing him to hire simplyα1, α2, . . . quantities of different
kinds of labour, as before, let us class his expenditure, under the
three heads of (1) wages, (2) prices of raw material, and (3) in-
terest on capital: while the value of his own work and enterprise
makes a fourth head.

Thus letx1, x2, . . . be the amounts of different classes of labour,
including that of superintendence, which he hires; the amount
of each kind of labour being made up of its duration and its
intensity.

Let y1, y2, . . . be amounts of various kinds of raw materials,
which are used up and embodied in the buildings; which may
be supposed to be sold freehold. In that case, the pieces of land
on which they are severally built are merely particular forms of
raw material from the present point of view, which is that of the
individual undertaker.

Next letz be the amount of locking up, or appropriation of the
employment, of capital for the several purposes. Here we must
reckon in all forms of capital reduced to a common money mea-
sure, including advances for wages, for the purchase of raw ma-
terial; also the uses, allowing for wear-and-tear etc. of his plant



of all kinds: his workshops themselves and the ground on which
they are built being reckoned on the same footing. The peri-
ods, during which the various lockings up run, will vary; but
they must be reduced, on a “compound rate,” i.e. according to
geometrical progression, to a standard unit, say a year.

Fourthly, letu represent the money equivalent of his own labour,
worry, anxiety, wear-and-tear etc. involved in the several under-
takings.

In addition, there are several elements, which might have been
entered under separate heads; but which we may suppose com-
bined with those already mentioned. Thus the allowance to be
made for risk may be shared between the last two heads. A proper
share of the general expenses of working the business (“supple-
mentary costs,” see p. 360) will be distributed among the four
heads of wages, raw materials, interest on the capital value of
the organization of the business (its goodwill etc.) regarded as
a going concern, and remuneration of the builder’s own work,
enterprise and anxiety.

Under these circumstancesV represents his total outlay, andH
his total receipts; and his efforts are directed to makingH − V

a maximum. On this plan, we have equations similar to those
already given, viz.:—

dV

dx1
= dH

dβ
· dβ
dx1

= dH

dβ ′ · dβ
′

dx1
= . . .

dV

dx2
= dH

dβ
· dβ
dx2

= dH

dβ ′ · dβ
′

dx2
= . . .

· · · · · ·



dV

dy1
= dH

dβ
· dβ
dy1

= dH

dβ ′ · dβ
′

dy1
= . . .

· · · · · ·
dV

dz
= dH

dβ
· dβ
dz

= dH

dβ ′ · dβ
′

dz
= . . .

dV

du
= dH

dβ
· dβ
du

= dH

dβ ′ · dβ
′

du
= . . . .

That is to say, the marginal outlay which the builder is willing
to make for an additional small supply,δx1, of the first class of

labour, viz.
dV

dx1
δx1, is equal to

dH

dβ
· dβ
dx1

δx1; i.e. to that incre-

ment in his total receiptsH , which he will obtain by the increase
in the villa accommodation provided by him that will result from
the extra small supply of the first class of labour: this will equal
a similar sum with regard to warehouse accommodation, and so
on. Thus he will have distributed his resources between various
uses in such a way that he would gain nothing by diverting any
part of any agent of production—labour, raw material, the use
of capital—nor his own labour and enterprise from one class of
building to another: also he would gain nothing by substituting
one agent for another in any branch of his enterprise, nor indeed
by any increase or diminution of his use of any agent. From this
point of view our equations have a drift very similar to the argu-
ment of Book III. ch.V. as to the choice between the different
uses of the same thing. (Compare one of the most interesting
notes(f ) attached to Prof. Edgeworth’s brilliant address to the
British Association in 1889.)

There is more to be said (see V.XI. 1, and VI. I. 8) on the
difficulty of interpreting the phrase the “net product" of any agent



of production, whether a particular kind of labour or any other
agent; and perhaps the rest of this note, though akin to what
has gone before, may more conveniently be read at a later stage.

The builder paid
dV

dx1
δx1 for the last element of the labour of the

first group because that was its net product; and, if directed to

building villas, it brought him in
dH

dβ
· dβ
dx1

δx1, as special receipts.

Now if p be the price per unit, which he receives for an amount
β of villa accommodation, and thereforepβ the price which he
receives for the whole amountβ; and if we put for shortness�β

in place of
dβ

dx1
δx1, the increase of villa accommodation due to

the additional element of labourδx1; then the net product we are
seeking is notp�β, butp�β + β�p; where�p is a negative
quantity, and is the fall in demand price caused by the increase in
the amount of villa accommodation offered by the builder. We
have to make some study of the relative magnitudes of these two
elementsp�β andβ�p.

If the builder monopolized the supply of villas,β would represent
the total supply of them: and, if it happened that the elasticity of
the demand for them was less than unity, when the amountβ was
offered, then, by increasing his supply, he would diminish his
total receipts; andp�β+β�pwould be a negative quantity. But
of course he would not have allowed the production to go just up
to an amount at which the demand would be thus inelastic. The
margin which he chose for his production would certainly be one
for which the negative quantityβ�p is less thanp�β, but not
necessarily so much less that it may be neglected in comparison.
This is a dominant fact in the theory of monopolies discussed in
Book V. chapterXIV .

It is dominant also in the case of any producer who has a limited



trade connection which he cannot quickly enlarge. If his cus-
tomers have already as much of his wares as they care for, so
that the elasticity of their demand is temporarily less than unity,
he might lose by putting on an additional man to work for him,
even though that man would work for nothing. This fear of tem-
porarily spoiling a man’s special market is a leading influence in
many problems of value relating to short periods (see Book V.
chs. V. VII . XI .); and especially in those periods of commercial
depression, and in those regulations of trade associations, formal
and informal, which we shall have to study in the second volume.
There is an allied difficulty in the case of commodities of which
the expenses of production diminish rapidly with every increase
in the amount produced: but here the causes that govern the lim-
its of production are so complex that it seems hardly worth while
to attempt to translate them into mathematical language. See V.
XII . 2.

When however we are studying the action of an individual under-
taker with a view of illustrating the normal action of the causes
which govern the general demand for the several agents of pro-
duction, it seems clear that we should avoid cases of this kind.
We should leave their peculiar features to be analysed separately
in special discussions, and take our normal illustration from a
case in which the individual is only one of many who have ef-
ficient, if indirect, access to the market. Ifβ�p be numerically
equal top�β, whereβ is the whole production in a large market;
and an individual undertaker producedβ ′, a thousandth part of
β; then the increased receipt from putting on an additional man is
p�β ′, which is the same asp�β; and the deduction to be made
from it is onlyβ ′�p, which is a thousandth part ofβ�p and may
be neglected. For the purpose therefore of illustrating a part of
the general action of the laws of distribution we are justified in



speaking of the value of the net product of the marginal work of
any agent of production as the amount of that net product taken
at the normal selling value of the product, that is, asp�β.

It may be noticed that none of these difficulties are dependent
upon the system of division of labour and work for payment;
though they are brought into prominence by the habit of measur-
ing efforts and satisfactions by price, which is associated with it.
Robinson Crusoe erecting a building for himself would not find
that an addition of a thousandth part to his previous accommoda-
tion increased his comfort by a thousandth part. What he added
might be of the same character with the rest; but if one counted
it in at the same rate of real value to him, one would have to
reckon for the fact that the new part made the old of somewhat
less urgent need, of somewhat lower real value to him (see note
1 on p. 417). On the other hand, the law of increasing return
might render it very difficult for him to assign its true net prod-
uct to a given half-hour’s work. For instance, suppose that some
small herbs, grateful as condiment, and easily portable, grow in
a part of his island, which it takes half a day to visit; and he has
gone there to get small batches at a time. Afterwards he gives
a whole day, having no important use to which he can put less
than half a day, and comes back with ten times as great a load as
before. We cannot then separate the return of the last half-hour
from the rest; our only plan is to take the whole day as a unit,
and compare its return of satisfaction with those of days spent
in other ways; and in the modern system of industry we have the
similar, but more difficult task of taking, for some purposes, the
whole of a process of production as a single unit.

It would be possible to extend the scope of such systems of equa-
tions as we have been considering, and to increase their detail,



until they embraced within themselves the whole of the demand
side of the problem of distribution. But while a mathematical
illustration of the mode of action of a definite set of causes may
be complete in itself, and strictly accurate within its clearly de-
fined limits, it is otherwise with any attempt to grasp the whole
of a complex problem of real life, or even any considerable part
of it, in a series of equations. For many important considera-
tions, especially those connected with the manifold influences
of the element of time, do not lend themselves easily to math-
ematical expression: they must either be omitted altogether, or
clipped and pruned till they resemble the conventional birds and
animals of decorative art. And hence arises a tendency towards
assigning wrong proportions to economic forces; those elements
being most emphasized which lend themselves most easily to
analytical methods. No doubt this danger is inherent in every
application not only of mathematical analysis, but of analysis of
any kind, to the problems of real life. It is a danger which more
than any other the economist must have in mind at every turn.
But to avoid it altogether, would be to abandon the chief means
of scientific progress: and in discussions written specially for
mathematical readers it is no doubt right to be very bold in the
search for wide generalizations.

In such discussions it may be right, for instance, to regardH as
the sum total of satisfactions, andV as the sum total of dissatisfac-
tions (efforts, sacrifices etc.) which accrue to a community from
economic causes; to simplify the notion of the action of these
causes by assumptions similar to those which are involved, more
or less consciously, in the various forms of the doctrine that the
constant drift of these causes is towards the attainment of the
Maximum Satisfaction, in the net aggregate for the community
(see above pp. 470–5); or, in other words, that there is a constant



tendency to makeH − V a maximum for society as a whole.
On this plan the resulting differential equations of the same class
as those which we have been discussing, will be interpreted to
represent value as governed in every field of economics by the
balancing of groups of utilities against groups of disutilities, of
groups of satisfactions against groups of real costs. Such dis-
cussions have their place: but it is not in a treatise such as the
present, in which mathematics are used only to express in terse
and more precise language those methods of analysis and rea-
soning which ordinary people adopt, more or less consciously,
in the affairs of every-day life.

It may indeed be admitted that such discussions have some points
of resemblance to the method of analysis applied in Book III.
to the total utility of particular commodities. The difference be-
tween the two cases is mainly one of degree: but it is of a degree
so great as practically to amount to a difference of kind. For
in the former case we take each commodity by itself and with
reference to a particular market; and we take careful account of
the circumstances of the consumers at the time and place under
consideration. Thus we follow, though perhaps with more care-
ful precautions, the practice of ministers of finance, and of the
common man when discussing financial policy. We note that a
few commodities are consumed mainly by the rich; and that in
consequence their real total utilities are less than is suggested
by the money measures of those utilities. But we assume, with
the rest of the world, that as a rule, and in the absence of special
causes to the contrary, the real total utilities of two commodities
that are mainly consumed by the rich stand to one another in
about the same relation as their money measures do: and that
the same is true of commodities the consumption of which is
divided out among rich and middle classes and poor in similar



proportions. Such estimates are but rough approximations; but
each particular difficulty, each source of possible error, is pushed
into prominence by the definiteness of our phrases: we introduce
no assumptions that are not latent in the practice of ordinary life;
while we attempt no task that is not grappled with in a rougher
fashion, but yet to good purpose, in the practice of ordinary life:
we introduce no new assumptions, and we bring into clear light
those which cannot be avoided. But though this is possible when
dealing with particular commodities with reference to particular
markets, it does not seem possible with regard to the innumer-
able economic elements that come within the all-embracing net
of the doctrine of Maximum Satisfaction. The forces of supply
are especially heterogeneous and complex: they include an in-
finite variety of efforts and sacrifices, direct and indirect, on the
part of people in all varieties of industrial grades: and if there
were no other hindrance to giving a concrete interpretation to the
doctrine, a fatal obstacle would be found in its latent assump-
tion that the cost of rearing children and preparing them for their
work can be measured in the same way as the cost of erecting a
machine.

For reasons similar to those given in this typical case, our math-
ematical notes will cover less and less ground as the complexity
of the subjects discussed in the text increases. A few of those
that follow relate to monopolies, which present some sides sin-
gularly open to direct analytical treatment. But the majority of
the remainder will be occupied with illustrations of joint and
composite demand and supply which have much in common
with the substance of this note: while the last of that series Note
XXI. goes a little way towards a general survey of the problem
of distribution and exchange (without reference to the element
of time), but only so far as to make sure that the mathematical



illustrations used point towards a system of equations, which are
neither more nor less in number than the unknowns introduced
into them.

NOTE XIV. bis (p. 384). In the diagrams of this chapter (V.VI .)
the supply curves are all inclined positively; and in our mathe-
matical versions of them we shall suppose the marginal expenses
of production to be determined with a definiteness that does not
exist in real life: we shall take no account of the time required
for developing a representative business with the internal and
external economies of production on a large scale; and we shall
ignore all those difficulties connected with the law of increasing
return which are discussed in Book V. ch.XII . To adopt any
other course would lead us to mathematical complexities, which
though perhaps not without their use, would be unsuitable for a
treatise of this kind. The discussions therefore in this and the fol-
lowing notes must be regarded as sketches rather than complete
studies.

Let the factors of production of a commodityA bea1, a2, etc.;
and let their supply equations bey = φ1(x), y = φ2(x), etc.
Let the number of units of them required for the production of
x units of A bem1x,m2x, . . . respectively; wherem1,m2, . . .

are generally not constants but functions ofx. Then the supply
equation ofA is

y = 1(x) = m1φ1(m1x)+m2φ2(m2x)+ · · · ≡ ${mφ(mx)}.

Let y = F(x) be the demand equation for the finished com-
modity, then the derived demand equation forar the r th factor
is

y = F(x)− {φ(x)−mrφr(mrx)}.



But in this equationy is the price, not of one unit of the factor
but of m units; and to get an equation expressed in terms of
fixed units letη be the price of one unit, and letξ = mrx, then

n = 1

mr

· y and the equation becomes

η = fr(ξ) = 1

mr

[
F

(
1

mr

ξ

)
−

{
φ

(
1

mr

ξ

)
−mrφr(ξ)

}]
.

If mr is a function ofx, say= ψr(x); thenx must be determined
in terms ofξ by the equationξ = xψr(x), so thatmr can be
writtenχr(ξ); substituting this we haveη expressed as a function
of ξ . The supply equation forar is simplyη = φr(ξ).

NOTE XV. (p. 386). Let the demand equation for knives be

y = F(x).................(1),
let the supply equation for knives bey = 1(x).................(2),
let that for handles be y = φ1(x) ................(3),
and that for blades be y = φ2(x) ................(4),

then the demand equation for handles is

y = f1(x) = F(x)−φ2(x) ......(5).

The measure of elasticity for (5) is−
{
xf ′

1(x)

f1(x)

}−1

, that is,

−
{
xF ′(x)− xφ′

2(x)

f1(x)

}−1

;

that is,

{
−xF ′(x)

F (x)
· F(x)
f1(x)

+ xφ′
2(x)

f1(x)

}−1

.

This will be the smaller the more fully the following conditions



are satisfied: (i) that−xF ′(x)
F (x)

, which is necessarily positive, be

large, i.e. that the elasticity of the demand for knives be small;
(ii) thatφ′

2(x) be positive and large, i.e. that the supply price for
blades should increase rapidly with an increase, and diminish
rapidly with a diminution of the amount supplied; and (iii) that
F(x)

f1(x)
should be large; that is, that the price of handles should

be but a small part of the price of knives.

A similar, but more complex inquiry, leads to substantially the
same results, when the units of the factors of production are not
fixed, but vary as in the preceding note.

NOTE XVI. (p. 387). Suppose thatm bushels of hops are used in
making a gallon of ale of a certain kind, of which in equilibrium
x′ gallons are sold at a pricey′ = F(x′). Let m be changed
into m + �m; and, as a result, whenx′ gallons are still offered

for sale let them find purchasers at a pricey′ + �y′; then
�y′

�m
represents the marginal demand price for hops: if it is greater
than their supply price, it will be to the interest of the brewers to
put more hops into the ale. Or, to put the case more generally, let
y = F(x,m), y = 1(x,m)be the demand and supply equations
for beer,x being the number of gallons andm the number of
bushels of hops in each gallon. ThenF(x,m) − 1(x,m) =
excess of demand over supply price. In equilibrium this is of
course zero: but if it were possible to make it a positive sum by
varyingm the change would be effected: therefore (assuming
that there is no perceptible change in the expense of making the
beer, other than what results from the increased amount of hops)
dF

dm
= d1

dm
: the first represents the marginal demand price, and

the second the marginal supply price of hops; and these two are



therefore equal.

This method is of course capable of being extended to cases in
which there are concurrent variations in two or more factors of
production.

NOTE XVII. (p. 388). Suppose that a thing, whether a finished
commodity or a factor of production, is distributed between two
uses, so that of the total amountx the part devoted to the first
use isx1, and that devoted to the second use isx2. Lety = φ(x)

be the total supply equation;y = f1(x1) andy = f2(x2) be
the demand equations for its first and second uses. Then in
equilibrium the three unknownsx, x1, andx2 are determined by
the three equationsf1(x1) = f2(x2) = φ(x); x1 + x2 = x.

Next suppose that it is desired to obtain separately the relations
of demand and supply of the thing in its first use, on the suppo-
sition that, whatever perturbations there may be in its first use,
its demand and supply for the second use remains in equilib-
rium; i.e. that its demand price for the second use is equal to
its supply price for the total amount that is actually produced,
i.e. f2(x2) = φ(x1 + x2) always. From this equation we can
determinex2 in terms ofx1, and thereforex in terms ofx1; and
therefore we can writeφ(x) = ψ(x1). Thus the supply equation
for the thing in its first use becomesy = ψ(x1); and this with the
already known equationy = f1(x1) gives the relations required.

NOTEXVIII. (p. 389). Leta1, a2, . . .be joint products,m1x,m2x, . . .

of them severally being produced as the result ofx units of their
joint process of production, for which the supply equation is
y = φ(x). Let

y = f1(x), y = f2(x), . . .



be their respective demand equations. Then in equilibrium

m1f1(m1x)+m2f2(m2x)+ · · · = φ(x).

Let x′ be the value ofx determined from this equation; then
f1(m1x

′), f2(m2x
′) etc. are the equilibrium prices of the several

joint products. Of coursem1,m2 are expressed if necessary in
terms ofx′.

NOTE XIX. (p. 390). This case corresponds,mutatis mutandis,
to that discussed in Note XVI. If in equilibriumx′ oxen annu-
ally are supplied and sold at a pricey′ = φ(x′); and each ox
yieldsm units of beef: and if breeders find that by modifying
the breeding and feeding of oxen they can increase their meat-
yielding properties to the extent of�m units of beef (the hides
and other joint products being, on the balance, unaltered), and

that the extra expense of doing this is�y′, then
�y′

�m
represents

the marginal supply price of beef: if this price were less than the
selling price, it would be to the interest of breeders to make the
change.

NOTE XX. (p. 391). Leta1, a2, . . . be things which are fitted to
subserve exactly the same function. Let their units be so chosen
that a unit of any one of them is equivalent to a unit of any
others. Let their several supply equations bey1 = φ1(x1), y2 =
φ2(x2), . . . .

In these equations let the variable be changed, and let them be
written x1 = ψ1(y1), x2 = ψ2(y2), . . .. Let y = f (x) be the
demand equation for the service for which all of them are fitted.
Then in equilibriumx andy are determined by the equationsy =
f (x); x = x1 + x2 + · · · , y1 = y2 = · · · = y. (The equations



must be such that none of the quantitiesx1, x2, . . . can have a
negative value. Wheny1 has fallen to a certain levelx1 becomes
zero; and for lower valuesx1 remains zero; it does not become
negative.) As was observed in the text, it must be assumed that
the supply equations all conform to the law of diminishing return;
i.e. thatφ′

1(x), φ
′
2(x), . . . are always positive.

NOTE XXI. (p. 393). We may now take a bird’s-eye view of the
problems of joint demand, composite demand, joint supply and
composite supply when they all arise together, with the object of
making sure that our abstract theory has just as many equations
as it has unknowns, neither more nor less.

In a problem of joint demand we may suppose that there aren

commoditiesA1, A2, . . . An. LetA1 havea1 factors of produc-
tion, letA2 havea2 factors, and so on, so that the total number
of factors of production isa1 + a2 + a3 + · · ·+ an: let this= m.

First, suppose that all the factors are different, so that there is
no composite demand; that each factor has a separate process of
production, so that there are no joint products; and lastly, that no
two factors subserve the same use, so that there is no composite
supply. We then have 2n + 2m unknowns, viz. the amounts
and prices ofn commodities and ofm factors; and to determine
them we have 2m+2n equations, viz.—(i)n demand equations,
each of which connects the price and amount of a commodity;
(ii) n equations, each of which equates the supply price for any
amount of a commodity to the sum of the prices of corresponding
amounts of its factors; (iii)m supply equations, each of which
connects the price of a factor with its amount; and lastly, (iv)m

equations, each of which states the amount of a factor which is
used in the production of a given amount of the commodity.



Next, let us take account not only of joint demand but also of
composite demand. Letβ1 of the factors of production consist
of the same thing, say carpenters’ work of a certain efficiency;
in other words, let carpenters’ work be one of the factors of
production ofβ1 of then commoditiesA1, A2, . . . . Then since
the carpenters’ work is taken to have the same price in whatever
production it is used, there is only one price for each of these
factors of production, and the number of unknowns is diminished
byβ1 −1; also the number of supply equations is diminished by
β1 − 1: and so on for other cases.

Next, let us in addition take account of joint supply. Letγ1 of the
things used in producing the commodities be joint products of
one and the same process. Then the number of unknowns is not
altered; but the number of supply equations is reduced by(γ1 −
1): this deficiency is however made up by a new set of(γ1 − 1)
equations connecting the amounts of these joint products: and
so on.

Lastly, let one of the things used have a composite supply made
up from δ1 rival sources: then, reserving the old supply equa-
tions for the first of these rivals, we have 2(δ1 − 1) additional
unknowns, consisting of the prices and amounts of the remaining
(δ1 − 1) rivals. These are covered by(δ1 − 1) supply equations
for the rivals and(δ1 − 1) equations between the prices of theδ1

rivals.

Thus, however complex the problem may become, we can see
that it is theoretically determinate, because the number of un-
knowns is always exactly equal to the number of the equations
which we obtain.



NOTE XXII. (p. 480). If y = f1(x), y = f2(x) be the equations
to the demand and supply curves respectively, the amount of
production which affords the maximum monopoly revenue is
found by making{xf1(x)−xf2(x)} a maximum; that is, it is the
root, or one of the roots of the equation

d

dx
{xf1(x)− xf2(x)} = 0.

The supply function is represented here byf2(x) instead of as
before byφ(x), partly to emphasize the fact that supply price
does not mean exactly the same thing here as it did in the previous
notes, partly to fall in with that system of numbering the curves
which is wanted to prevent confusion now that their number is
being increased.

NOTEXXIII. (p. 482). If a tax be imposed of which the aggregate
amount isF(x), then, in order to find the value ofx which

makes the monopoly revenue a maximum, we have
d

dx
{xf1(x)−

xf2(x)−F(x)} = 0; and it is clear that ifF(x) is either constant,
as in the case of a license duty, or varies asxf1(x) − xf2(x), as
in the case of an income-tax, this equation has the same roots as
it would have ifF(x) were zero.

Treating the problems geometrically, we notice that, if a fixed
burden be imposed on a monopoly sufficiently to make the mo-
nopoly revenue curve fall altogether belowOx, andq ′ be the
point on the new curve vertically belowL in fig. 35, then the new
curve atq ′ will touch one of a series of rectangular hyperbolas
drawn withyO produced downwards for one asymptote andOx

for the other. These curves may be called Constant Loss curves.

Again, a tax proportionate to the monopoly revenue, and say



m times that revenue (m being less than 1), will substitute for
QQ′ a curve each ordinate of which is(1 − m)× the ordinate
of the corresponding point onQQ′; i.e. the point which has
the same abscissa. The tangents to corresponding points on the
old and new positions ofQQ′ will cut Ox in the same point,
as is obvious by the method of projections. But it is a law of
rectangular hyperbolas which have the same asymptotes that, if
a line be drawn parallel to one asymptote to cut the hyperbolas,
and tangents be drawn to them at its points of intersection, they
will all cut the other asymptote in the same point. Therefore
if q ′

3 be the point on the new position ofQQ′ corresponding
to q3, and if we callG the point in which the common tangent
to the hyperbola andQQ′ cutsOx, Gq ′

3 will be a tangent to
the hyperbola which passes throughq ′

3; that is,q ′
3 is a point of

maximum revenue on the new curve.

The geometrical and analytical methods of this note can be ap-
plied to cases, such as are discussed in the latter part of §4 in the
text, in which the tax is levied on the produce of the monopoly.

NOTE XXIII. bis (p. 489). These results have easy geometrical
proofs by Newton’s method, and by the use of well-known prop-
erties of the rectangular hyperbola. They may also be proved
analytically. As before lety = f1(x) be the equation to the
demand curve;y = f2(x) that to the supply curve; and that
to the monopoly revenue curve isy = f3(x), wheref3(x) =
f1(x) − f2(x) the equation to the consumers’ surplus curve
y = f4(x); where

f4(x) = 1

x

∫ x

0
f1(a)da − f1(x).



That to the total benefit curve isy = f5(x); where

f5(x) = f3(x)+ f4(x) = 1

x

∫ x

0
f1(a)da − f2(x);

a result which may of course be obtained directly. That to the
compromise benefit curve isy = f6(x); wheref6(x) = f3(x)+
nf4(x); consumers’surplus being reckoned in by the monopolist
atn times its actual value.

To find OL (fig. 37), that is, the amount the sale of which will
afford the maximum monopoly revenue, we have the equation

d

dx
{xf3(x)} = 0; i.e. f1(x)− f2(x) = x{f ′

2(x)− f ′
1(x)};

the left-hand side of this equation is necessarily positive, and
therefore so is the right-hand side, which shows, what is oth-
erwise obvious, that ifLq3 be produced to cut the supply and
demand curves inq2 andq1 respectively, the supply curve at
q2 (if included negatively) must make a greater angle with the
vertical than is made by the demand curve atq1.

To findOW, that is, the amount the sale of which will afford the
maximum total benefit, we have

d

dx
{xf5(x)} = 0; i.e. f1(x)− f2(x)− xf ′

2(x) = 0.

To find OY, that is, the amount the sale of which will afford the
maximum compromise benefit, we have

d

dx
{xf6(x)} = 0;

i.e.
d

dx

{
(1 − n)xf1(x)− xf2(x)+ n

∫ x

0
f1(a)da

}
= 0;

i.e. (1 − n)xf ′
1(x)+ f1(x)− f2(x)− xf ′

2(x) = 0.



If OL = c, the condition thatOY should be greater thanON

is that
d

dx
{xf6(x)} be positive whenc is written forx in it; i.e.

since
d

dx
{xf3(x)} = 0 whenx = c, that

d

dx
{xf4(x)} be positive

whenx = c; i.e. thatf ′
1(c) be negative. But this condition

is satisfied whatever be the value ofc. This proves the first of
the two results given at the end of V.XIV . 7; and the proof of
the second is similar. (The working of these results and of their
proofs tacitly assumes that there is only one point of maximum
monopoly revenue.)

One more result may be added to those in the text. Let us write
OH = a, then the condition thatOY should be greater than

OH is that
d

dx
{nf6(x)} be positive whena is written forx: that

is, sincef1(a) = f2(a), that(1 − n)f ′
1(a) − f ′

2(a) be positive.
Now f ′

1(a) is always negative, and therefore the condition be-
comes thatf ′

2(x) be negative, i.e. that the supply obey the law
of increasing return and that tanφ be numerically greater than
(1 − n) tanθ , whereθ andφ are the angles which tangents at
A to the demand and supply curves respectively make withOx.
Whenn = 1, the sole condition is that tanφ be negative: that
is, OW is greater thanOH provided the supply curve atA be
inclined negatively. In other words, if the monopolist regards
the interest of consumers as identical with his own, he will carry
his production further than the point at which the supply price
(in the special sense in which we are here using the term) is equal
to the demand price, provided the supply in the neighbourhood
of that point obeys the law of increasing return: but he will carry
it less far if the supply obeys the law of diminishing return.

NOTE XXIV. (p. 565). Let�x be the probable amount of his



production of wealth in time�t , and�y the probable amount
of his consumption. Then the discounted value of his future

services is
∫ T

0
R−t

(
dx

dt
− dy

dt

)
dt; whereT is the maximum

possible duration of his life. On the like plan the past cost of his

rearing and training is
∫ 0

−T ′
R−t

(
dy

dt
− dx

dt

)
dt , whereT ′ is the

date of his birth. If we were to assume that he would neither add
to nor take from the material wellbeing of a country in which he

stayed all his life, we should have
∫ T

−T

R−t

(
dx

dt
− dy

dt

)
dt = 0;

or, taking the starting-point of time at his birth, andl = T ′+T =
the maximum possible length of his life, this assumes the simpler

form,
∫ l

0
R−t

(
dx

dt
− dy

dt

)
dt = 0.

To say that�x is the probable amount of his production in time
�t , is to put shortly what may be more accurately expressed
thus:—letp1, p2, . . . be the chances that in time�t he will
produce elements of wealth�1x,�2x, . . ., wherep1 + p2 +
· · · = 1; and one or more of the series�1x,�x, . . . may be
zero; then

�x = p1�1x + p2�2x + · · · ·

The End
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